This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An atom is greater than zero. (Contributed by NM, 4-Jul-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0ltat.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 0ltat.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| 0ltat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | 0ltat | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴 ) → 0 < 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ltat.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 2 | 0ltat.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 3 | 0ltat.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | simpl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴 ) → 𝐾 ∈ OP ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 6 | 5 1 | op0cl | ⊢ ( 𝐾 ∈ OP → 0 ∈ ( Base ‘ 𝐾 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴 ) → 0 ∈ ( Base ‘ 𝐾 ) ) |
| 8 | 5 3 | atbase | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 10 | eqid | ⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) | |
| 11 | 1 10 3 | atcvr0 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴 ) → 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) |
| 12 | 5 2 10 | cvrlt | ⊢ ( ( ( 𝐾 ∈ OP ∧ 0 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) ∧ 0 ( ⋖ ‘ 𝐾 ) 𝑃 ) → 0 < 𝑃 ) |
| 13 | 4 7 9 11 12 | syl31anc | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑃 ∈ 𝐴 ) → 0 < 𝑃 ) |