This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of atoms is a subset of the base set. ( atssch analog.) (Contributed by NM, 21-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atombase.b | |- B = ( Base ` K ) |
|
| atombase.a | |- A = ( Atoms ` K ) |
||
| Assertion | atssbase | |- A C_ B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atombase.b | |- B = ( Base ` K ) |
|
| 2 | atombase.a | |- A = ( Atoms ` K ) |
|
| 3 | 1 2 | atbase | |- ( x e. A -> x e. B ) |
| 4 | 3 | ssriv | |- A C_ B |