This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element less than or equal to zero equals zero. ( chle0 analog.) (Contributed by NM, 21-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atl0le.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| atl0le.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| atl0le.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| Assertion | atlle0 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ≤ 0 ↔ 𝑋 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atl0le.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | atl0le.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | atl0le.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 4 | 1 2 3 | atl0le | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ) → 0 ≤ 𝑋 ) |
| 5 | 4 | biantrud | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ≤ 0 ↔ ( 𝑋 ≤ 0 ∧ 0 ≤ 𝑋 ) ) ) |
| 6 | atlpos | ⊢ ( 𝐾 ∈ AtLat → 𝐾 ∈ Poset ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Poset ) |
| 8 | simpr | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 9 | 1 3 | atl0cl | ⊢ ( 𝐾 ∈ AtLat → 0 ∈ 𝐵 ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
| 11 | 1 2 | posasymb | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → ( ( 𝑋 ≤ 0 ∧ 0 ≤ 𝑋 ) ↔ 𝑋 = 0 ) ) |
| 12 | 7 8 10 11 | syl3anc | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 ≤ 0 ∧ 0 ≤ 𝑋 ) ↔ 𝑋 = 0 ) ) |
| 13 | 5 12 | bitrd | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ≤ 0 ↔ 𝑋 = 0 ) ) |