This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element less than or equal to zero equals zero. ( chle0 analog.) (Contributed by NM, 21-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atl0le.b | |- B = ( Base ` K ) |
|
| atl0le.l | |- .<_ = ( le ` K ) |
||
| atl0le.z | |- .0. = ( 0. ` K ) |
||
| Assertion | atlle0 | |- ( ( K e. AtLat /\ X e. B ) -> ( X .<_ .0. <-> X = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atl0le.b | |- B = ( Base ` K ) |
|
| 2 | atl0le.l | |- .<_ = ( le ` K ) |
|
| 3 | atl0le.z | |- .0. = ( 0. ` K ) |
|
| 4 | 1 2 3 | atl0le | |- ( ( K e. AtLat /\ X e. B ) -> .0. .<_ X ) |
| 5 | 4 | biantrud | |- ( ( K e. AtLat /\ X e. B ) -> ( X .<_ .0. <-> ( X .<_ .0. /\ .0. .<_ X ) ) ) |
| 6 | atlpos | |- ( K e. AtLat -> K e. Poset ) |
|
| 7 | 6 | adantr | |- ( ( K e. AtLat /\ X e. B ) -> K e. Poset ) |
| 8 | simpr | |- ( ( K e. AtLat /\ X e. B ) -> X e. B ) |
|
| 9 | 1 3 | atl0cl | |- ( K e. AtLat -> .0. e. B ) |
| 10 | 9 | adantr | |- ( ( K e. AtLat /\ X e. B ) -> .0. e. B ) |
| 11 | 1 2 | posasymb | |- ( ( K e. Poset /\ X e. B /\ .0. e. B ) -> ( ( X .<_ .0. /\ .0. .<_ X ) <-> X = .0. ) ) |
| 12 | 7 8 10 11 | syl3anc | |- ( ( K e. AtLat /\ X e. B ) -> ( ( X .<_ .0. /\ .0. .<_ X ) <-> X = .0. ) ) |
| 13 | 5 12 | bitrd | |- ( ( K e. AtLat /\ X e. B ) -> ( X .<_ .0. <-> X = .0. ) ) |