This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An atom is a member of the lattice base set (i.e. a lattice element). ( atelch analog.) (Contributed by NM, 10-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atombase.b | ||
| atombase.a | |||
| Assertion | atbase |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atombase.b | ||
| 2 | atombase.a | ||
| 3 | n0i | ||
| 4 | 2 | eqeq1i | |
| 5 | 3 4 | sylnib | |
| 6 | fvprc | ||
| 7 | 5 6 | nsyl2 | |
| 8 | eqid | ||
| 9 | eqid | ||
| 10 | 1 8 9 2 | isat | |
| 11 | 10 | simprbda | |
| 12 | 7 11 | mpancom |