This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The properties of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isassa.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| isassa.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| isassa.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| isassa.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| isassa.t | ⊢ × = ( .r ‘ 𝑊 ) | ||
| Assertion | assalem | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ∧ ( 𝑋 × ( 𝐴 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isassa.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | isassa.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | isassa.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 4 | isassa.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 5 | isassa.t | ⊢ × = ( .r ‘ 𝑊 ) | |
| 6 | 1 2 3 4 5 | isassa | ⊢ ( 𝑊 ∈ AssAlg ↔ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ) ∧ ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) |
| 7 | 6 | simprbi | ⊢ ( 𝑊 ∈ AssAlg → ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) |
| 8 | oveq1 | ⊢ ( 𝑟 = 𝐴 → ( 𝑟 · 𝑥 ) = ( 𝐴 · 𝑥 ) ) | |
| 9 | 8 | oveq1d | ⊢ ( 𝑟 = 𝐴 → ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( ( 𝐴 · 𝑥 ) × 𝑦 ) ) |
| 10 | oveq1 | ⊢ ( 𝑟 = 𝐴 → ( 𝑟 · ( 𝑥 × 𝑦 ) ) = ( 𝐴 · ( 𝑥 × 𝑦 ) ) ) | |
| 11 | 9 10 | eqeq12d | ⊢ ( 𝑟 = 𝐴 → ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ↔ ( ( 𝐴 · 𝑥 ) × 𝑦 ) = ( 𝐴 · ( 𝑥 × 𝑦 ) ) ) ) |
| 12 | oveq1 | ⊢ ( 𝑟 = 𝐴 → ( 𝑟 · 𝑦 ) = ( 𝐴 · 𝑦 ) ) | |
| 13 | 12 | oveq2d | ⊢ ( 𝑟 = 𝐴 → ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑥 × ( 𝐴 · 𝑦 ) ) ) |
| 14 | 13 10 | eqeq12d | ⊢ ( 𝑟 = 𝐴 → ( ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ↔ ( 𝑥 × ( 𝐴 · 𝑦 ) ) = ( 𝐴 · ( 𝑥 × 𝑦 ) ) ) ) |
| 15 | 11 14 | anbi12d | ⊢ ( 𝑟 = 𝐴 → ( ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ↔ ( ( ( 𝐴 · 𝑥 ) × 𝑦 ) = ( 𝐴 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝐴 · 𝑦 ) ) = ( 𝐴 · ( 𝑥 × 𝑦 ) ) ) ) ) |
| 16 | oveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 𝑋 ) ) | |
| 17 | 16 | oveq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐴 · 𝑥 ) × 𝑦 ) = ( ( 𝐴 · 𝑋 ) × 𝑦 ) ) |
| 18 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 × 𝑦 ) = ( 𝑋 × 𝑦 ) ) | |
| 19 | 18 | oveq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝐴 · ( 𝑥 × 𝑦 ) ) = ( 𝐴 · ( 𝑋 × 𝑦 ) ) ) |
| 20 | 17 19 | eqeq12d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝐴 · 𝑥 ) × 𝑦 ) = ( 𝐴 · ( 𝑥 × 𝑦 ) ) ↔ ( ( 𝐴 · 𝑋 ) × 𝑦 ) = ( 𝐴 · ( 𝑋 × 𝑦 ) ) ) ) |
| 21 | oveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 × ( 𝐴 · 𝑦 ) ) = ( 𝑋 × ( 𝐴 · 𝑦 ) ) ) | |
| 22 | 21 19 | eqeq12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 × ( 𝐴 · 𝑦 ) ) = ( 𝐴 · ( 𝑥 × 𝑦 ) ) ↔ ( 𝑋 × ( 𝐴 · 𝑦 ) ) = ( 𝐴 · ( 𝑋 × 𝑦 ) ) ) ) |
| 23 | 20 22 | anbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( ( ( 𝐴 · 𝑥 ) × 𝑦 ) = ( 𝐴 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝐴 · 𝑦 ) ) = ( 𝐴 · ( 𝑥 × 𝑦 ) ) ) ↔ ( ( ( 𝐴 · 𝑋 ) × 𝑦 ) = ( 𝐴 · ( 𝑋 × 𝑦 ) ) ∧ ( 𝑋 × ( 𝐴 · 𝑦 ) ) = ( 𝐴 · ( 𝑋 × 𝑦 ) ) ) ) ) |
| 24 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( ( 𝐴 · 𝑋 ) × 𝑦 ) = ( ( 𝐴 · 𝑋 ) × 𝑌 ) ) | |
| 25 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 × 𝑦 ) = ( 𝑋 × 𝑌 ) ) | |
| 26 | 25 | oveq2d | ⊢ ( 𝑦 = 𝑌 → ( 𝐴 · ( 𝑋 × 𝑦 ) ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) |
| 27 | 24 26 | eqeq12d | ⊢ ( 𝑦 = 𝑌 → ( ( ( 𝐴 · 𝑋 ) × 𝑦 ) = ( 𝐴 · ( 𝑋 × 𝑦 ) ) ↔ ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) ) |
| 28 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝑌 ) ) | |
| 29 | 28 | oveq2d | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 × ( 𝐴 · 𝑦 ) ) = ( 𝑋 × ( 𝐴 · 𝑌 ) ) ) |
| 30 | 29 26 | eqeq12d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 × ( 𝐴 · 𝑦 ) ) = ( 𝐴 · ( 𝑋 × 𝑦 ) ) ↔ ( 𝑋 × ( 𝐴 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) ) |
| 31 | 27 30 | anbi12d | ⊢ ( 𝑦 = 𝑌 → ( ( ( ( 𝐴 · 𝑋 ) × 𝑦 ) = ( 𝐴 · ( 𝑋 × 𝑦 ) ) ∧ ( 𝑋 × ( 𝐴 · 𝑦 ) ) = ( 𝐴 · ( 𝑋 × 𝑦 ) ) ) ↔ ( ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ∧ ( 𝑋 × ( 𝐴 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) ) ) |
| 32 | 15 23 31 | rspc3v | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) → ( ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ∧ ( 𝑋 × ( 𝐴 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) ) ) |
| 33 | 7 32 | mpan9 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ∧ ( 𝑋 × ( 𝐴 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) ) |