This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The properties of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isassa.v | |- V = ( Base ` W ) |
|
| isassa.f | |- F = ( Scalar ` W ) |
||
| isassa.b | |- B = ( Base ` F ) |
||
| isassa.s | |- .x. = ( .s ` W ) |
||
| isassa.t | |- .X. = ( .r ` W ) |
||
| Assertion | assalem | |- ( ( W e. AssAlg /\ ( A e. B /\ X e. V /\ Y e. V ) ) -> ( ( ( A .x. X ) .X. Y ) = ( A .x. ( X .X. Y ) ) /\ ( X .X. ( A .x. Y ) ) = ( A .x. ( X .X. Y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isassa.v | |- V = ( Base ` W ) |
|
| 2 | isassa.f | |- F = ( Scalar ` W ) |
|
| 3 | isassa.b | |- B = ( Base ` F ) |
|
| 4 | isassa.s | |- .x. = ( .s ` W ) |
|
| 5 | isassa.t | |- .X. = ( .r ` W ) |
|
| 6 | 1 2 3 4 5 | isassa | |- ( W e. AssAlg <-> ( ( W e. LMod /\ W e. Ring ) /\ A. r e. B A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) ) |
| 7 | 6 | simprbi | |- ( W e. AssAlg -> A. r e. B A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) |
| 8 | oveq1 | |- ( r = A -> ( r .x. x ) = ( A .x. x ) ) |
|
| 9 | 8 | oveq1d | |- ( r = A -> ( ( r .x. x ) .X. y ) = ( ( A .x. x ) .X. y ) ) |
| 10 | oveq1 | |- ( r = A -> ( r .x. ( x .X. y ) ) = ( A .x. ( x .X. y ) ) ) |
|
| 11 | 9 10 | eqeq12d | |- ( r = A -> ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) <-> ( ( A .x. x ) .X. y ) = ( A .x. ( x .X. y ) ) ) ) |
| 12 | oveq1 | |- ( r = A -> ( r .x. y ) = ( A .x. y ) ) |
|
| 13 | 12 | oveq2d | |- ( r = A -> ( x .X. ( r .x. y ) ) = ( x .X. ( A .x. y ) ) ) |
| 14 | 13 10 | eqeq12d | |- ( r = A -> ( ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) <-> ( x .X. ( A .x. y ) ) = ( A .x. ( x .X. y ) ) ) ) |
| 15 | 11 14 | anbi12d | |- ( r = A -> ( ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) <-> ( ( ( A .x. x ) .X. y ) = ( A .x. ( x .X. y ) ) /\ ( x .X. ( A .x. y ) ) = ( A .x. ( x .X. y ) ) ) ) ) |
| 16 | oveq2 | |- ( x = X -> ( A .x. x ) = ( A .x. X ) ) |
|
| 17 | 16 | oveq1d | |- ( x = X -> ( ( A .x. x ) .X. y ) = ( ( A .x. X ) .X. y ) ) |
| 18 | oveq1 | |- ( x = X -> ( x .X. y ) = ( X .X. y ) ) |
|
| 19 | 18 | oveq2d | |- ( x = X -> ( A .x. ( x .X. y ) ) = ( A .x. ( X .X. y ) ) ) |
| 20 | 17 19 | eqeq12d | |- ( x = X -> ( ( ( A .x. x ) .X. y ) = ( A .x. ( x .X. y ) ) <-> ( ( A .x. X ) .X. y ) = ( A .x. ( X .X. y ) ) ) ) |
| 21 | oveq1 | |- ( x = X -> ( x .X. ( A .x. y ) ) = ( X .X. ( A .x. y ) ) ) |
|
| 22 | 21 19 | eqeq12d | |- ( x = X -> ( ( x .X. ( A .x. y ) ) = ( A .x. ( x .X. y ) ) <-> ( X .X. ( A .x. y ) ) = ( A .x. ( X .X. y ) ) ) ) |
| 23 | 20 22 | anbi12d | |- ( x = X -> ( ( ( ( A .x. x ) .X. y ) = ( A .x. ( x .X. y ) ) /\ ( x .X. ( A .x. y ) ) = ( A .x. ( x .X. y ) ) ) <-> ( ( ( A .x. X ) .X. y ) = ( A .x. ( X .X. y ) ) /\ ( X .X. ( A .x. y ) ) = ( A .x. ( X .X. y ) ) ) ) ) |
| 24 | oveq2 | |- ( y = Y -> ( ( A .x. X ) .X. y ) = ( ( A .x. X ) .X. Y ) ) |
|
| 25 | oveq2 | |- ( y = Y -> ( X .X. y ) = ( X .X. Y ) ) |
|
| 26 | 25 | oveq2d | |- ( y = Y -> ( A .x. ( X .X. y ) ) = ( A .x. ( X .X. Y ) ) ) |
| 27 | 24 26 | eqeq12d | |- ( y = Y -> ( ( ( A .x. X ) .X. y ) = ( A .x. ( X .X. y ) ) <-> ( ( A .x. X ) .X. Y ) = ( A .x. ( X .X. Y ) ) ) ) |
| 28 | oveq2 | |- ( y = Y -> ( A .x. y ) = ( A .x. Y ) ) |
|
| 29 | 28 | oveq2d | |- ( y = Y -> ( X .X. ( A .x. y ) ) = ( X .X. ( A .x. Y ) ) ) |
| 30 | 29 26 | eqeq12d | |- ( y = Y -> ( ( X .X. ( A .x. y ) ) = ( A .x. ( X .X. y ) ) <-> ( X .X. ( A .x. Y ) ) = ( A .x. ( X .X. Y ) ) ) ) |
| 31 | 27 30 | anbi12d | |- ( y = Y -> ( ( ( ( A .x. X ) .X. y ) = ( A .x. ( X .X. y ) ) /\ ( X .X. ( A .x. y ) ) = ( A .x. ( X .X. y ) ) ) <-> ( ( ( A .x. X ) .X. Y ) = ( A .x. ( X .X. Y ) ) /\ ( X .X. ( A .x. Y ) ) = ( A .x. ( X .X. Y ) ) ) ) ) |
| 32 | 15 23 31 | rspc3v | |- ( ( A e. B /\ X e. V /\ Y e. V ) -> ( A. r e. B A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) -> ( ( ( A .x. X ) .X. Y ) = ( A .x. ( X .X. Y ) ) /\ ( X .X. ( A .x. Y ) ) = ( A .x. ( X .X. Y ) ) ) ) ) |
| 33 | 7 32 | mpan9 | |- ( ( W e. AssAlg /\ ( A e. B /\ X e. V /\ Y e. V ) ) -> ( ( ( A .x. X ) .X. Y ) = ( A .x. ( X .X. Y ) ) /\ ( X .X. ( A .x. Y ) ) = ( A .x. ( X .X. Y ) ) ) ) |