This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subcan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) = ( 𝐵 − 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 2 | simp3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) | |
| 3 | subcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) | |
| 4 | 3 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
| 5 | subadd2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ( 𝐵 − 𝐶 ) ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) = ( 𝐵 − 𝐶 ) ↔ ( ( 𝐵 − 𝐶 ) + 𝐶 ) = 𝐴 ) ) | |
| 6 | 1 2 4 5 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) = ( 𝐵 − 𝐶 ) ↔ ( ( 𝐵 − 𝐶 ) + 𝐶 ) = 𝐴 ) ) |
| 7 | npcan | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 − 𝐶 ) + 𝐶 ) = 𝐵 ) | |
| 8 | 7 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 − 𝐶 ) + 𝐶 ) = 𝐵 ) |
| 9 | 8 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐵 − 𝐶 ) + 𝐶 ) = 𝐴 ↔ 𝐵 = 𝐴 ) ) |
| 10 | eqcom | ⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) | |
| 11 | 9 10 | bitrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐵 − 𝐶 ) + 𝐶 ) = 𝐴 ↔ 𝐴 = 𝐵 ) ) |
| 12 | 6 11 | bitrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) = ( 𝐵 − 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |