This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar 0 embedded into a left module corresponds to the 0 of the left module if the left module is also a ring. (Contributed by AV, 31-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ascl0.a | ||
| ascl0.f | |||
| ascl0.l | |||
| ascl0.r | |||
| Assertion | ascl0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ascl0.a | ||
| 2 | ascl0.f | ||
| 3 | ascl0.l | ||
| 4 | ascl0.r | ||
| 5 | 2 | lmodfgrp | |
| 6 | eqid | ||
| 7 | eqid | ||
| 8 | 6 7 | grpidcl | |
| 9 | eqid | ||
| 10 | eqid | ||
| 11 | 1 2 6 9 10 | asclval | |
| 12 | 3 5 8 11 | 4syl | |
| 13 | eqid | ||
| 14 | 13 10 | ringidcl | |
| 15 | 4 14 | syl | |
| 16 | eqid | ||
| 17 | 13 2 9 7 16 | lmod0vs | |
| 18 | 3 15 17 | syl2anc | |
| 19 | 12 18 | eqtrd |