This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 6 conjuncts. (Contributed by NM, 13-Mar-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | an6 | |- ( ( ( ph /\ ps /\ ch ) /\ ( th /\ ta /\ et ) ) <-> ( ( ph /\ th ) /\ ( ps /\ ta ) /\ ( ch /\ et ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 | |- ( ( ( ( ph /\ ps ) /\ ch ) /\ ( ( th /\ ta ) /\ et ) ) <-> ( ( ( ph /\ ps ) /\ ( th /\ ta ) ) /\ ( ch /\ et ) ) ) |
|
| 2 | an4 | |- ( ( ( ph /\ ps ) /\ ( th /\ ta ) ) <-> ( ( ph /\ th ) /\ ( ps /\ ta ) ) ) |
|
| 3 | 1 2 | bianbi | |- ( ( ( ( ph /\ ps ) /\ ch ) /\ ( ( th /\ ta ) /\ et ) ) <-> ( ( ( ph /\ th ) /\ ( ps /\ ta ) ) /\ ( ch /\ et ) ) ) |
| 4 | df-3an | |- ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) ) |
|
| 5 | df-3an | |- ( ( th /\ ta /\ et ) <-> ( ( th /\ ta ) /\ et ) ) |
|
| 6 | 4 5 | anbi12i | |- ( ( ( ph /\ ps /\ ch ) /\ ( th /\ ta /\ et ) ) <-> ( ( ( ph /\ ps ) /\ ch ) /\ ( ( th /\ ta ) /\ et ) ) ) |
| 7 | df-3an | |- ( ( ( ph /\ th ) /\ ( ps /\ ta ) /\ ( ch /\ et ) ) <-> ( ( ( ph /\ th ) /\ ( ps /\ ta ) ) /\ ( ch /\ et ) ) ) |
|
| 8 | 3 6 7 | 3bitr4i | |- ( ( ( ph /\ ps /\ ch ) /\ ( th /\ ta /\ et ) ) <-> ( ( ph /\ th ) /\ ( ps /\ ta ) /\ ( ch /\ et ) ) ) |