This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of conjunction over threefold conjunction. (Contributed by Thierry Arnoux, 8-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | an3andi | |- ( ( ph /\ ( ps /\ ch /\ th ) ) <-> ( ( ph /\ ps ) /\ ( ph /\ ch ) /\ ( ph /\ th ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anandi | |- ( ( ph /\ ( ( ps /\ ch ) /\ th ) ) <-> ( ( ph /\ ( ps /\ ch ) ) /\ ( ph /\ th ) ) ) |
|
| 2 | anandi | |- ( ( ph /\ ( ps /\ ch ) ) <-> ( ( ph /\ ps ) /\ ( ph /\ ch ) ) ) |
|
| 3 | 1 2 | bianbi | |- ( ( ph /\ ( ( ps /\ ch ) /\ th ) ) <-> ( ( ( ph /\ ps ) /\ ( ph /\ ch ) ) /\ ( ph /\ th ) ) ) |
| 4 | df-3an | |- ( ( ps /\ ch /\ th ) <-> ( ( ps /\ ch ) /\ th ) ) |
|
| 5 | 4 | anbi2i | |- ( ( ph /\ ( ps /\ ch /\ th ) ) <-> ( ph /\ ( ( ps /\ ch ) /\ th ) ) ) |
| 6 | df-3an | |- ( ( ( ph /\ ps ) /\ ( ph /\ ch ) /\ ( ph /\ th ) ) <-> ( ( ( ph /\ ps ) /\ ( ph /\ ch ) ) /\ ( ph /\ th ) ) ) |
|
| 7 | 3 5 6 | 3bitr4i | |- ( ( ph /\ ( ps /\ ch /\ th ) ) <-> ( ( ph /\ ps ) /\ ( ph /\ ch ) /\ ( ph /\ th ) ) ) |