This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There are at least aleph-one real numbers. (Contributed by NM, 2-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | aleph1re | ⊢ ( ℵ ‘ 1o ) ≼ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aleph0 | ⊢ ( ℵ ‘ ∅ ) = ω | |
| 2 | nnenom | ⊢ ℕ ≈ ω | |
| 3 | 2 | ensymi | ⊢ ω ≈ ℕ |
| 4 | 1 3 | eqbrtri | ⊢ ( ℵ ‘ ∅ ) ≈ ℕ |
| 5 | ruc | ⊢ ℕ ≺ ℝ | |
| 6 | ensdomtr | ⊢ ( ( ( ℵ ‘ ∅ ) ≈ ℕ ∧ ℕ ≺ ℝ ) → ( ℵ ‘ ∅ ) ≺ ℝ ) | |
| 7 | 4 5 6 | mp2an | ⊢ ( ℵ ‘ ∅ ) ≺ ℝ |
| 8 | alephnbtwn2 | ⊢ ¬ ( ( ℵ ‘ ∅ ) ≺ ℝ ∧ ℝ ≺ ( ℵ ‘ suc ∅ ) ) | |
| 9 | 7 8 | mptnan | ⊢ ¬ ℝ ≺ ( ℵ ‘ suc ∅ ) |
| 10 | df-1o | ⊢ 1o = suc ∅ | |
| 11 | 10 | fveq2i | ⊢ ( ℵ ‘ 1o ) = ( ℵ ‘ suc ∅ ) |
| 12 | 11 | breq2i | ⊢ ( ℝ ≺ ( ℵ ‘ 1o ) ↔ ℝ ≺ ( ℵ ‘ suc ∅ ) ) |
| 13 | 9 12 | mtbir | ⊢ ¬ ℝ ≺ ( ℵ ‘ 1o ) |
| 14 | fvex | ⊢ ( ℵ ‘ 1o ) ∈ V | |
| 15 | reex | ⊢ ℝ ∈ V | |
| 16 | domtri | ⊢ ( ( ( ℵ ‘ 1o ) ∈ V ∧ ℝ ∈ V ) → ( ( ℵ ‘ 1o ) ≼ ℝ ↔ ¬ ℝ ≺ ( ℵ ‘ 1o ) ) ) | |
| 17 | 14 15 16 | mp2an | ⊢ ( ( ℵ ‘ 1o ) ≼ ℝ ↔ ¬ ℝ ≺ ( ℵ ‘ 1o ) ) |
| 18 | 13 17 | mpbir | ⊢ ( ℵ ‘ 1o ) ≼ ℝ |