This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every operator has at most one adjoint. (Contributed by NM, 25-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip2eqi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ip2eqi.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| ip2eqi.u | ⊢ 𝑈 ∈ CPreHilOLD | ||
| Assertion | ajmoi | ⊢ ∃* 𝑠 ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip2eqi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ip2eqi.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 3 | ip2eqi.u | ⊢ 𝑈 ∈ CPreHilOLD | |
| 4 | r19.26-2 | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ∧ ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) ↔ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) ) | |
| 5 | eqtr2 | ⊢ ( ( ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ∧ ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) → ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) | |
| 6 | 5 | 2ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ∧ ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) |
| 7 | 4 6 | sylbir | ⊢ ( ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) |
| 8 | 1 2 3 | phoeqi | ⊢ ( ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ 𝑡 : 𝑌 ⟶ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ↔ 𝑠 = 𝑡 ) ) |
| 9 | 8 | biimpa | ⊢ ( ( ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ 𝑡 : 𝑌 ⟶ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) → 𝑠 = 𝑡 ) |
| 10 | 7 9 | sylan2 | ⊢ ( ( ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ 𝑡 : 𝑌 ⟶ 𝑋 ) ∧ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) ) → 𝑠 = 𝑡 ) |
| 11 | 10 | an4s | ⊢ ( ( ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ∧ ( 𝑡 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) ) → 𝑠 = 𝑡 ) |
| 12 | 11 | gen2 | ⊢ ∀ 𝑠 ∀ 𝑡 ( ( ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ∧ ( 𝑡 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) ) → 𝑠 = 𝑡 ) |
| 13 | feq1 | ⊢ ( 𝑠 = 𝑡 → ( 𝑠 : 𝑌 ⟶ 𝑋 ↔ 𝑡 : 𝑌 ⟶ 𝑋 ) ) | |
| 14 | fveq1 | ⊢ ( 𝑠 = 𝑡 → ( 𝑠 ‘ 𝑦 ) = ( 𝑡 ‘ 𝑦 ) ) | |
| 15 | 14 | oveq2d | ⊢ ( 𝑠 = 𝑡 → ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) |
| 16 | 15 | eqeq2d | ⊢ ( 𝑠 = 𝑡 → ( ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ↔ ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) ) |
| 17 | 16 | 2ralbidv | ⊢ ( 𝑠 = 𝑡 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) ) |
| 18 | 13 17 | anbi12d | ⊢ ( 𝑠 = 𝑡 → ( ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ↔ ( 𝑡 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) ) ) |
| 19 | 18 | mo4 | ⊢ ( ∃* 𝑠 ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ↔ ∀ 𝑠 ∀ 𝑡 ( ( ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ∧ ( 𝑡 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑡 ‘ 𝑦 ) ) ) ) → 𝑠 = 𝑡 ) ) |
| 20 | 12 19 | mpbir | ⊢ ∃* 𝑠 ( 𝑠 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) = ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) |