This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition implying that two operators are equal. (Contributed by NM, 25-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ip2eqi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ip2eqi.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| ip2eqi.u | ⊢ 𝑈 ∈ CPreHilOLD | ||
| Assertion | phoeqi | ⊢ ( ( 𝑆 : 𝑌 ⟶ 𝑋 ∧ 𝑇 : 𝑌 ⟶ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ↔ 𝑆 = 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ip2eqi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ip2eqi.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 3 | ip2eqi.u | ⊢ 𝑈 ∈ CPreHilOLD | |
| 4 | ralcom | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑌 ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) | |
| 5 | ffvelcdm | ⊢ ( ( 𝑆 : 𝑌 ⟶ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑆 ‘ 𝑦 ) ∈ 𝑋 ) | |
| 6 | ffvelcdm | ⊢ ( ( 𝑇 : 𝑌 ⟶ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑇 ‘ 𝑦 ) ∈ 𝑋 ) | |
| 7 | 1 2 3 | ip2eqi | ⊢ ( ( ( 𝑆 ‘ 𝑦 ) ∈ 𝑋 ∧ ( 𝑇 ‘ 𝑦 ) ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) ) |
| 8 | 5 6 7 | syl2an | ⊢ ( ( ( 𝑆 : 𝑌 ⟶ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ∧ ( 𝑇 : 𝑌 ⟶ 𝑋 ∧ 𝑦 ∈ 𝑌 ) ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) ) |
| 9 | 8 | anandirs | ⊢ ( ( ( 𝑆 : 𝑌 ⟶ 𝑋 ∧ 𝑇 : 𝑌 ⟶ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) ) |
| 10 | 9 | ralbidva | ⊢ ( ( 𝑆 : 𝑌 ⟶ 𝑋 ∧ 𝑇 : 𝑌 ⟶ 𝑋 ) → ( ∀ 𝑦 ∈ 𝑌 ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑆 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) ) |
| 11 | ffn | ⊢ ( 𝑆 : 𝑌 ⟶ 𝑋 → 𝑆 Fn 𝑌 ) | |
| 12 | ffn | ⊢ ( 𝑇 : 𝑌 ⟶ 𝑋 → 𝑇 Fn 𝑌 ) | |
| 13 | eqfnfv | ⊢ ( ( 𝑆 Fn 𝑌 ∧ 𝑇 Fn 𝑌 ) → ( 𝑆 = 𝑇 ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑆 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) ) | |
| 14 | 11 12 13 | syl2an | ⊢ ( ( 𝑆 : 𝑌 ⟶ 𝑋 ∧ 𝑇 : 𝑌 ⟶ 𝑋 ) → ( 𝑆 = 𝑇 ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑆 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) ) |
| 15 | 10 14 | bitr4d | ⊢ ( ( 𝑆 : 𝑌 ⟶ 𝑋 ∧ 𝑇 : 𝑌 ⟶ 𝑋 ) → ( ∀ 𝑦 ∈ 𝑌 ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ↔ 𝑆 = 𝑇 ) ) |
| 16 | 4 15 | bitrid | ⊢ ( ( 𝑆 : 𝑌 ⟶ 𝑋 ∧ 𝑇 : 𝑌 ⟶ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝑃 ( 𝑆 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ↔ 𝑆 = 𝑇 ) ) |