This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The adjoint function is a function. (Contributed by NM, 25-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ajfuni.5 | ⊢ 𝐴 = ( 𝑈 adj 𝑊 ) | |
| ajfuni.u | ⊢ 𝑈 ∈ CPreHilOLD | ||
| ajfuni.w | ⊢ 𝑊 ∈ NrmCVec | ||
| Assertion | ajfuni | ⊢ Fun 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ajfuni.5 | ⊢ 𝐴 = ( 𝑈 adj 𝑊 ) | |
| 2 | ajfuni.u | ⊢ 𝑈 ∈ CPreHilOLD | |
| 3 | ajfuni.w | ⊢ 𝑊 ∈ NrmCVec | |
| 4 | funopab | ⊢ ( Fun { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) } ↔ ∀ 𝑡 ∃* 𝑠 ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) ) | |
| 5 | eqid | ⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) | |
| 6 | eqid | ⊢ ( ·𝑖OLD ‘ 𝑈 ) = ( ·𝑖OLD ‘ 𝑈 ) | |
| 7 | 5 6 2 | ajmoi | ⊢ ∃* 𝑠 ( 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) |
| 8 | 3simpc | ⊢ ( ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) → ( 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) ) | |
| 9 | 8 | moimi | ⊢ ( ∃* 𝑠 ( 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) → ∃* 𝑠 ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) ) |
| 10 | 7 9 | ax-mp | ⊢ ∃* 𝑠 ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) |
| 11 | 4 10 | mpgbir | ⊢ Fun { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) } |
| 12 | 2 | phnvi | ⊢ 𝑈 ∈ NrmCVec |
| 13 | eqid | ⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) | |
| 14 | eqid | ⊢ ( ·𝑖OLD ‘ 𝑊 ) = ( ·𝑖OLD ‘ 𝑊 ) | |
| 15 | 5 13 6 14 1 | ajfval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝐴 = { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) } ) |
| 16 | 12 3 15 | mp2an | ⊢ 𝐴 = { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) } |
| 17 | 16 | funeqi | ⊢ ( Fun 𝐴 ↔ Fun { 〈 𝑡 , 𝑠 〉 ∣ ( 𝑡 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑠 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑈 ) ∧ ∀ 𝑥 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑦 ∈ ( BaseSet ‘ 𝑊 ) ( ( 𝑡 ‘ 𝑥 ) ( ·𝑖OLD ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖OLD ‘ 𝑈 ) ( 𝑠 ‘ 𝑦 ) ) ) } ) |
| 18 | 11 17 | mpbir | ⊢ Fun 𝐴 |