This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of the lengths of two parts of a word is the length of the word. (Contributed by AV, 21-Oct-2018) (Revised by AV, 3-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addlenpfx | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) + ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) = ( ♯ ‘ 𝑊 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pfxlen | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) = 𝑀 ) | |
| 2 | swrdrlen | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) | |
| 3 | 1 2 | oveq12d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) + ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) = ( 𝑀 + ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) ) |
| 4 | elfznn0 | ⊢ ( 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝑀 ∈ ℕ0 ) | |
| 5 | 4 | nn0cnd | ⊢ ( 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝑀 ∈ ℂ ) |
| 6 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 7 | 6 | nn0cnd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
| 8 | pncan3 | ⊢ ( ( 𝑀 ∈ ℂ ∧ ( ♯ ‘ 𝑊 ) ∈ ℂ ) → ( 𝑀 + ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) = ( ♯ ‘ 𝑊 ) ) | |
| 9 | 5 7 8 | syl2anr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑀 + ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 10 | 3 9 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) + ( ♯ ‘ ( 𝑊 substr 〈 𝑀 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) = ( ♯ ‘ 𝑊 ) ) |