This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Length of a right-anchored subword. (Contributed by Alexander van der Vekens, 5-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdrlen | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 substr 〈 𝐼 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( ( ♯ ‘ 𝑊 ) − 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 2 | nn0fz0 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 5 | swrdlen | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 substr 〈 𝐼 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( ( ♯ ‘ 𝑊 ) − 𝐼 ) ) | |
| 6 | 4 5 | mpd3an3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 substr 〈 𝐼 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( ( ♯ ‘ 𝑊 ) − 𝐼 ) ) |