This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addcmpblnr | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → 〈 ( 𝐴 +P 𝐹 ) , ( 𝐵 +P 𝐺 ) 〉 ~R 〈 ( 𝐶 +P 𝑅 ) , ( 𝐷 +P 𝑆 ) 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 | ⊢ ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → ( ( 𝐴 +P 𝐷 ) +P ( 𝐹 +P 𝑆 ) ) = ( ( 𝐵 +P 𝐶 ) +P ( 𝐺 +P 𝑅 ) ) ) | |
| 2 | addclpr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐹 ∈ P ) → ( 𝐴 +P 𝐹 ) ∈ P ) | |
| 3 | addclpr | ⊢ ( ( 𝐵 ∈ P ∧ 𝐺 ∈ P ) → ( 𝐵 +P 𝐺 ) ∈ P ) | |
| 4 | 2 3 | anim12i | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐹 ∈ P ) ∧ ( 𝐵 ∈ P ∧ 𝐺 ∈ P ) ) → ( ( 𝐴 +P 𝐹 ) ∈ P ∧ ( 𝐵 +P 𝐺 ) ∈ P ) ) |
| 5 | 4 | an4s | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ) → ( ( 𝐴 +P 𝐹 ) ∈ P ∧ ( 𝐵 +P 𝐺 ) ∈ P ) ) |
| 6 | addclpr | ⊢ ( ( 𝐶 ∈ P ∧ 𝑅 ∈ P ) → ( 𝐶 +P 𝑅 ) ∈ P ) | |
| 7 | addclpr | ⊢ ( ( 𝐷 ∈ P ∧ 𝑆 ∈ P ) → ( 𝐷 +P 𝑆 ) ∈ P ) | |
| 8 | 6 7 | anim12i | ⊢ ( ( ( 𝐶 ∈ P ∧ 𝑅 ∈ P ) ∧ ( 𝐷 ∈ P ∧ 𝑆 ∈ P ) ) → ( ( 𝐶 +P 𝑅 ) ∈ P ∧ ( 𝐷 +P 𝑆 ) ∈ P ) ) |
| 9 | 8 | an4s | ⊢ ( ( ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) → ( ( 𝐶 +P 𝑅 ) ∈ P ∧ ( 𝐷 +P 𝑆 ) ∈ P ) ) |
| 10 | 5 9 | anim12i | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ) ∧ ( ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( ( 𝐴 +P 𝐹 ) ∈ P ∧ ( 𝐵 +P 𝐺 ) ∈ P ) ∧ ( ( 𝐶 +P 𝑅 ) ∈ P ∧ ( 𝐷 +P 𝑆 ) ∈ P ) ) ) |
| 11 | 10 | an4s | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( ( 𝐴 +P 𝐹 ) ∈ P ∧ ( 𝐵 +P 𝐺 ) ∈ P ) ∧ ( ( 𝐶 +P 𝑅 ) ∈ P ∧ ( 𝐷 +P 𝑆 ) ∈ P ) ) ) |
| 12 | enrbreq | ⊢ ( ( ( ( 𝐴 +P 𝐹 ) ∈ P ∧ ( 𝐵 +P 𝐺 ) ∈ P ) ∧ ( ( 𝐶 +P 𝑅 ) ∈ P ∧ ( 𝐷 +P 𝑆 ) ∈ P ) ) → ( 〈 ( 𝐴 +P 𝐹 ) , ( 𝐵 +P 𝐺 ) 〉 ~R 〈 ( 𝐶 +P 𝑅 ) , ( 𝐷 +P 𝑆 ) 〉 ↔ ( ( 𝐴 +P 𝐹 ) +P ( 𝐷 +P 𝑆 ) ) = ( ( 𝐵 +P 𝐺 ) +P ( 𝐶 +P 𝑅 ) ) ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( 〈 ( 𝐴 +P 𝐹 ) , ( 𝐵 +P 𝐺 ) 〉 ~R 〈 ( 𝐶 +P 𝑅 ) , ( 𝐷 +P 𝑆 ) 〉 ↔ ( ( 𝐴 +P 𝐹 ) +P ( 𝐷 +P 𝑆 ) ) = ( ( 𝐵 +P 𝐺 ) +P ( 𝐶 +P 𝑅 ) ) ) ) |
| 14 | addcompr | ⊢ ( 𝐹 +P 𝐷 ) = ( 𝐷 +P 𝐹 ) | |
| 15 | 14 | oveq1i | ⊢ ( ( 𝐹 +P 𝐷 ) +P 𝑆 ) = ( ( 𝐷 +P 𝐹 ) +P 𝑆 ) |
| 16 | addasspr | ⊢ ( ( 𝐹 +P 𝐷 ) +P 𝑆 ) = ( 𝐹 +P ( 𝐷 +P 𝑆 ) ) | |
| 17 | addasspr | ⊢ ( ( 𝐷 +P 𝐹 ) +P 𝑆 ) = ( 𝐷 +P ( 𝐹 +P 𝑆 ) ) | |
| 18 | 15 16 17 | 3eqtr3i | ⊢ ( 𝐹 +P ( 𝐷 +P 𝑆 ) ) = ( 𝐷 +P ( 𝐹 +P 𝑆 ) ) |
| 19 | 18 | oveq2i | ⊢ ( 𝐴 +P ( 𝐹 +P ( 𝐷 +P 𝑆 ) ) ) = ( 𝐴 +P ( 𝐷 +P ( 𝐹 +P 𝑆 ) ) ) |
| 20 | addasspr | ⊢ ( ( 𝐴 +P 𝐹 ) +P ( 𝐷 +P 𝑆 ) ) = ( 𝐴 +P ( 𝐹 +P ( 𝐷 +P 𝑆 ) ) ) | |
| 21 | addasspr | ⊢ ( ( 𝐴 +P 𝐷 ) +P ( 𝐹 +P 𝑆 ) ) = ( 𝐴 +P ( 𝐷 +P ( 𝐹 +P 𝑆 ) ) ) | |
| 22 | 19 20 21 | 3eqtr4i | ⊢ ( ( 𝐴 +P 𝐹 ) +P ( 𝐷 +P 𝑆 ) ) = ( ( 𝐴 +P 𝐷 ) +P ( 𝐹 +P 𝑆 ) ) |
| 23 | addcompr | ⊢ ( 𝐺 +P 𝐶 ) = ( 𝐶 +P 𝐺 ) | |
| 24 | 23 | oveq1i | ⊢ ( ( 𝐺 +P 𝐶 ) +P 𝑅 ) = ( ( 𝐶 +P 𝐺 ) +P 𝑅 ) |
| 25 | addasspr | ⊢ ( ( 𝐺 +P 𝐶 ) +P 𝑅 ) = ( 𝐺 +P ( 𝐶 +P 𝑅 ) ) | |
| 26 | addasspr | ⊢ ( ( 𝐶 +P 𝐺 ) +P 𝑅 ) = ( 𝐶 +P ( 𝐺 +P 𝑅 ) ) | |
| 27 | 24 25 26 | 3eqtr3i | ⊢ ( 𝐺 +P ( 𝐶 +P 𝑅 ) ) = ( 𝐶 +P ( 𝐺 +P 𝑅 ) ) |
| 28 | 27 | oveq2i | ⊢ ( 𝐵 +P ( 𝐺 +P ( 𝐶 +P 𝑅 ) ) ) = ( 𝐵 +P ( 𝐶 +P ( 𝐺 +P 𝑅 ) ) ) |
| 29 | addasspr | ⊢ ( ( 𝐵 +P 𝐺 ) +P ( 𝐶 +P 𝑅 ) ) = ( 𝐵 +P ( 𝐺 +P ( 𝐶 +P 𝑅 ) ) ) | |
| 30 | addasspr | ⊢ ( ( 𝐵 +P 𝐶 ) +P ( 𝐺 +P 𝑅 ) ) = ( 𝐵 +P ( 𝐶 +P ( 𝐺 +P 𝑅 ) ) ) | |
| 31 | 28 29 30 | 3eqtr4i | ⊢ ( ( 𝐵 +P 𝐺 ) +P ( 𝐶 +P 𝑅 ) ) = ( ( 𝐵 +P 𝐶 ) +P ( 𝐺 +P 𝑅 ) ) |
| 32 | 22 31 | eqeq12i | ⊢ ( ( ( 𝐴 +P 𝐹 ) +P ( 𝐷 +P 𝑆 ) ) = ( ( 𝐵 +P 𝐺 ) +P ( 𝐶 +P 𝑅 ) ) ↔ ( ( 𝐴 +P 𝐷 ) +P ( 𝐹 +P 𝑆 ) ) = ( ( 𝐵 +P 𝐶 ) +P ( 𝐺 +P 𝑅 ) ) ) |
| 33 | 13 32 | bitrdi | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( 〈 ( 𝐴 +P 𝐹 ) , ( 𝐵 +P 𝐺 ) 〉 ~R 〈 ( 𝐶 +P 𝑅 ) , ( 𝐷 +P 𝑆 ) 〉 ↔ ( ( 𝐴 +P 𝐷 ) +P ( 𝐹 +P 𝑆 ) ) = ( ( 𝐵 +P 𝐶 ) +P ( 𝐺 +P 𝑅 ) ) ) ) |
| 34 | 1 33 | imbitrrid | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) ∧ ( 𝐶 ∈ P ∧ 𝐷 ∈ P ) ) ∧ ( ( 𝐹 ∈ P ∧ 𝐺 ∈ P ) ∧ ( 𝑅 ∈ P ∧ 𝑆 ∈ P ) ) ) → ( ( ( 𝐴 +P 𝐷 ) = ( 𝐵 +P 𝐶 ) ∧ ( 𝐹 +P 𝑆 ) = ( 𝐺 +P 𝑅 ) ) → 〈 ( 𝐴 +P 𝐹 ) , ( 𝐵 +P 𝐺 ) 〉 ~R 〈 ( 𝐶 +P 𝑅 ) , ( 𝐷 +P 𝑆 ) 〉 ) ) |