This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addcmpblnr | |- ( ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) /\ ( ( F e. P. /\ G e. P. ) /\ ( R e. P. /\ S e. P. ) ) ) -> ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> <. ( A +P. F ) , ( B +P. G ) >. ~R <. ( C +P. R ) , ( D +P. S ) >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 | |- ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( A +P. D ) +P. ( F +P. S ) ) = ( ( B +P. C ) +P. ( G +P. R ) ) ) |
|
| 2 | addclpr | |- ( ( A e. P. /\ F e. P. ) -> ( A +P. F ) e. P. ) |
|
| 3 | addclpr | |- ( ( B e. P. /\ G e. P. ) -> ( B +P. G ) e. P. ) |
|
| 4 | 2 3 | anim12i | |- ( ( ( A e. P. /\ F e. P. ) /\ ( B e. P. /\ G e. P. ) ) -> ( ( A +P. F ) e. P. /\ ( B +P. G ) e. P. ) ) |
| 5 | 4 | an4s | |- ( ( ( A e. P. /\ B e. P. ) /\ ( F e. P. /\ G e. P. ) ) -> ( ( A +P. F ) e. P. /\ ( B +P. G ) e. P. ) ) |
| 6 | addclpr | |- ( ( C e. P. /\ R e. P. ) -> ( C +P. R ) e. P. ) |
|
| 7 | addclpr | |- ( ( D e. P. /\ S e. P. ) -> ( D +P. S ) e. P. ) |
|
| 8 | 6 7 | anim12i | |- ( ( ( C e. P. /\ R e. P. ) /\ ( D e. P. /\ S e. P. ) ) -> ( ( C +P. R ) e. P. /\ ( D +P. S ) e. P. ) ) |
| 9 | 8 | an4s | |- ( ( ( C e. P. /\ D e. P. ) /\ ( R e. P. /\ S e. P. ) ) -> ( ( C +P. R ) e. P. /\ ( D +P. S ) e. P. ) ) |
| 10 | 5 9 | anim12i | |- ( ( ( ( A e. P. /\ B e. P. ) /\ ( F e. P. /\ G e. P. ) ) /\ ( ( C e. P. /\ D e. P. ) /\ ( R e. P. /\ S e. P. ) ) ) -> ( ( ( A +P. F ) e. P. /\ ( B +P. G ) e. P. ) /\ ( ( C +P. R ) e. P. /\ ( D +P. S ) e. P. ) ) ) |
| 11 | 10 | an4s | |- ( ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) /\ ( ( F e. P. /\ G e. P. ) /\ ( R e. P. /\ S e. P. ) ) ) -> ( ( ( A +P. F ) e. P. /\ ( B +P. G ) e. P. ) /\ ( ( C +P. R ) e. P. /\ ( D +P. S ) e. P. ) ) ) |
| 12 | enrbreq | |- ( ( ( ( A +P. F ) e. P. /\ ( B +P. G ) e. P. ) /\ ( ( C +P. R ) e. P. /\ ( D +P. S ) e. P. ) ) -> ( <. ( A +P. F ) , ( B +P. G ) >. ~R <. ( C +P. R ) , ( D +P. S ) >. <-> ( ( A +P. F ) +P. ( D +P. S ) ) = ( ( B +P. G ) +P. ( C +P. R ) ) ) ) |
|
| 13 | 11 12 | syl | |- ( ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) /\ ( ( F e. P. /\ G e. P. ) /\ ( R e. P. /\ S e. P. ) ) ) -> ( <. ( A +P. F ) , ( B +P. G ) >. ~R <. ( C +P. R ) , ( D +P. S ) >. <-> ( ( A +P. F ) +P. ( D +P. S ) ) = ( ( B +P. G ) +P. ( C +P. R ) ) ) ) |
| 14 | addcompr | |- ( F +P. D ) = ( D +P. F ) |
|
| 15 | 14 | oveq1i | |- ( ( F +P. D ) +P. S ) = ( ( D +P. F ) +P. S ) |
| 16 | addasspr | |- ( ( F +P. D ) +P. S ) = ( F +P. ( D +P. S ) ) |
|
| 17 | addasspr | |- ( ( D +P. F ) +P. S ) = ( D +P. ( F +P. S ) ) |
|
| 18 | 15 16 17 | 3eqtr3i | |- ( F +P. ( D +P. S ) ) = ( D +P. ( F +P. S ) ) |
| 19 | 18 | oveq2i | |- ( A +P. ( F +P. ( D +P. S ) ) ) = ( A +P. ( D +P. ( F +P. S ) ) ) |
| 20 | addasspr | |- ( ( A +P. F ) +P. ( D +P. S ) ) = ( A +P. ( F +P. ( D +P. S ) ) ) |
|
| 21 | addasspr | |- ( ( A +P. D ) +P. ( F +P. S ) ) = ( A +P. ( D +P. ( F +P. S ) ) ) |
|
| 22 | 19 20 21 | 3eqtr4i | |- ( ( A +P. F ) +P. ( D +P. S ) ) = ( ( A +P. D ) +P. ( F +P. S ) ) |
| 23 | addcompr | |- ( G +P. C ) = ( C +P. G ) |
|
| 24 | 23 | oveq1i | |- ( ( G +P. C ) +P. R ) = ( ( C +P. G ) +P. R ) |
| 25 | addasspr | |- ( ( G +P. C ) +P. R ) = ( G +P. ( C +P. R ) ) |
|
| 26 | addasspr | |- ( ( C +P. G ) +P. R ) = ( C +P. ( G +P. R ) ) |
|
| 27 | 24 25 26 | 3eqtr3i | |- ( G +P. ( C +P. R ) ) = ( C +P. ( G +P. R ) ) |
| 28 | 27 | oveq2i | |- ( B +P. ( G +P. ( C +P. R ) ) ) = ( B +P. ( C +P. ( G +P. R ) ) ) |
| 29 | addasspr | |- ( ( B +P. G ) +P. ( C +P. R ) ) = ( B +P. ( G +P. ( C +P. R ) ) ) |
|
| 30 | addasspr | |- ( ( B +P. C ) +P. ( G +P. R ) ) = ( B +P. ( C +P. ( G +P. R ) ) ) |
|
| 31 | 28 29 30 | 3eqtr4i | |- ( ( B +P. G ) +P. ( C +P. R ) ) = ( ( B +P. C ) +P. ( G +P. R ) ) |
| 32 | 22 31 | eqeq12i | |- ( ( ( A +P. F ) +P. ( D +P. S ) ) = ( ( B +P. G ) +P. ( C +P. R ) ) <-> ( ( A +P. D ) +P. ( F +P. S ) ) = ( ( B +P. C ) +P. ( G +P. R ) ) ) |
| 33 | 13 32 | bitrdi | |- ( ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) /\ ( ( F e. P. /\ G e. P. ) /\ ( R e. P. /\ S e. P. ) ) ) -> ( <. ( A +P. F ) , ( B +P. G ) >. ~R <. ( C +P. R ) , ( D +P. S ) >. <-> ( ( A +P. D ) +P. ( F +P. S ) ) = ( ( B +P. C ) +P. ( G +P. R ) ) ) ) |
| 34 | 1 33 | imbitrrid | |- ( ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) /\ ( ( F e. P. /\ G e. P. ) /\ ( R e. P. /\ S e. P. ) ) ) -> ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> <. ( A +P. F ) , ( B +P. G ) >. ~R <. ( C +P. R ) , ( D +P. S ) >. ) ) |