This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Ackermann function at 0. (Contributed by AV, 2-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackval0 | ⊢ ( Ack ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ack | ⊢ Ack = seq 0 ( ( 𝑓 ∈ V , 𝑗 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ) | |
| 2 | 1 | fveq1i | ⊢ ( Ack ‘ 0 ) = ( seq 0 ( ( 𝑓 ∈ V , 𝑗 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ) ‘ 0 ) |
| 3 | 0z | ⊢ 0 ∈ ℤ | |
| 4 | seq1 | ⊢ ( 0 ∈ ℤ → ( seq 0 ( ( 𝑓 ∈ V , 𝑗 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ) ‘ 0 ) = ( ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ‘ 0 ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( seq 0 ( ( 𝑓 ∈ V , 𝑗 ∈ V ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ‘ 1 ) ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ) ‘ 0 ) = ( ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ‘ 0 ) |
| 6 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 7 | iftrue | ⊢ ( 𝑖 = 0 → if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) ) | |
| 8 | eqid | ⊢ ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) | |
| 9 | nn0ex | ⊢ ℕ0 ∈ V | |
| 10 | 9 | mptex | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) ∈ V |
| 11 | 7 8 10 | fvmpt | ⊢ ( 0 ∈ ℕ0 → ( ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) ) |
| 12 | 6 11 | ax-mp | ⊢ ( ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) , 𝑖 ) ) ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) |
| 13 | 2 5 12 | 3eqtri | ⊢ ( Ack ‘ 0 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 1 ) ) |