This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Ackermann function at (1,0), (1,1), (1,2). (Contributed by AV, 4-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackval1012 | ⊢ 〈 ( ( Ack ‘ 1 ) ‘ 0 ) , ( ( Ack ‘ 1 ) ‘ 1 ) , ( ( Ack ‘ 1 ) ‘ 2 ) 〉 = 〈 2 , 3 , 4 〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackval1 | ⊢ ( Ack ‘ 1 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 2 ) ) | |
| 2 | oveq1 | ⊢ ( 𝑛 = 0 → ( 𝑛 + 2 ) = ( 0 + 2 ) ) | |
| 3 | 2cn | ⊢ 2 ∈ ℂ | |
| 4 | 3 | addlidi | ⊢ ( 0 + 2 ) = 2 |
| 5 | 2 4 | eqtrdi | ⊢ ( 𝑛 = 0 → ( 𝑛 + 2 ) = 2 ) |
| 6 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 7 | 6 | a1i | ⊢ ( ( Ack ‘ 1 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 2 ) ) → 0 ∈ ℕ0 ) |
| 8 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 9 | 8 | a1i | ⊢ ( ( Ack ‘ 1 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 2 ) ) → 2 ∈ ℕ0 ) |
| 10 | 1 5 7 9 | fvmptd3 | ⊢ ( ( Ack ‘ 1 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 2 ) ) → ( ( Ack ‘ 1 ) ‘ 0 ) = 2 ) |
| 11 | oveq1 | ⊢ ( 𝑛 = 1 → ( 𝑛 + 2 ) = ( 1 + 2 ) ) | |
| 12 | 1p2e3 | ⊢ ( 1 + 2 ) = 3 | |
| 13 | 11 12 | eqtrdi | ⊢ ( 𝑛 = 1 → ( 𝑛 + 2 ) = 3 ) |
| 14 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 15 | 14 | a1i | ⊢ ( ( Ack ‘ 1 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 2 ) ) → 1 ∈ ℕ0 ) |
| 16 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 17 | 16 | a1i | ⊢ ( ( Ack ‘ 1 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 2 ) ) → 3 ∈ ℕ0 ) |
| 18 | 1 13 15 17 | fvmptd3 | ⊢ ( ( Ack ‘ 1 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 2 ) ) → ( ( Ack ‘ 1 ) ‘ 1 ) = 3 ) |
| 19 | oveq1 | ⊢ ( 𝑛 = 2 → ( 𝑛 + 2 ) = ( 2 + 2 ) ) | |
| 20 | 2p2e4 | ⊢ ( 2 + 2 ) = 4 | |
| 21 | 19 20 | eqtrdi | ⊢ ( 𝑛 = 2 → ( 𝑛 + 2 ) = 4 ) |
| 22 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 23 | 22 | a1i | ⊢ ( ( Ack ‘ 1 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 2 ) ) → 4 ∈ ℕ0 ) |
| 24 | 1 21 9 23 | fvmptd3 | ⊢ ( ( Ack ‘ 1 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 2 ) ) → ( ( Ack ‘ 1 ) ‘ 2 ) = 4 ) |
| 25 | 10 18 24 | oteq123d | ⊢ ( ( Ack ‘ 1 ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝑛 + 2 ) ) → 〈 ( ( Ack ‘ 1 ) ‘ 0 ) , ( ( Ack ‘ 1 ) ‘ 1 ) , ( ( Ack ‘ 1 ) ‘ 2 ) 〉 = 〈 2 , 3 , 4 〉 ) |
| 26 | 1 25 | ax-mp | ⊢ 〈 ( ( Ack ‘ 1 ) ‘ 0 ) , ( ( Ack ‘ 1 ) ‘ 1 ) , ( ( Ack ‘ 1 ) ‘ 2 ) 〉 = 〈 2 , 3 , 4 〉 |