This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of the product of the elements of a finite subset of the integers not containing 0 is a poitive integer. (Contributed by AV, 21-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | absproddvds.s | ⊢ ( 𝜑 → 𝑍 ⊆ ℤ ) | |
| absproddvds.f | ⊢ ( 𝜑 → 𝑍 ∈ Fin ) | ||
| absproddvds.p | ⊢ 𝑃 = ( abs ‘ ∏ 𝑧 ∈ 𝑍 𝑧 ) | ||
| absprodnn.z | ⊢ ( 𝜑 → 0 ∉ 𝑍 ) | ||
| Assertion | absprodnn | ⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | absproddvds.s | ⊢ ( 𝜑 → 𝑍 ⊆ ℤ ) | |
| 2 | absproddvds.f | ⊢ ( 𝜑 → 𝑍 ∈ Fin ) | |
| 3 | absproddvds.p | ⊢ 𝑃 = ( abs ‘ ∏ 𝑧 ∈ 𝑍 𝑧 ) | |
| 4 | absprodnn.z | ⊢ ( 𝜑 → 0 ∉ 𝑍 ) | |
| 5 | 1 | sselda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑍 ) → 𝑧 ∈ ℤ ) |
| 6 | 2 5 | fprodzcl | ⊢ ( 𝜑 → ∏ 𝑧 ∈ 𝑍 𝑧 ∈ ℤ ) |
| 7 | 5 | zcnd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑍 ) → 𝑧 ∈ ℂ ) |
| 8 | elnelne2 | ⊢ ( ( 𝑧 ∈ 𝑍 ∧ 0 ∉ 𝑍 ) → 𝑧 ≠ 0 ) | |
| 9 | 8 | expcom | ⊢ ( 0 ∉ 𝑍 → ( 𝑧 ∈ 𝑍 → 𝑧 ≠ 0 ) ) |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑍 → 𝑧 ≠ 0 ) ) |
| 11 | 10 | imp | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑍 ) → 𝑧 ≠ 0 ) |
| 12 | 2 7 11 | fprodn0 | ⊢ ( 𝜑 → ∏ 𝑧 ∈ 𝑍 𝑧 ≠ 0 ) |
| 13 | nnabscl | ⊢ ( ( ∏ 𝑧 ∈ 𝑍 𝑧 ∈ ℤ ∧ ∏ 𝑧 ∈ 𝑍 𝑧 ≠ 0 ) → ( abs ‘ ∏ 𝑧 ∈ 𝑍 𝑧 ) ∈ ℕ ) | |
| 14 | 6 12 13 | syl2anc | ⊢ ( 𝜑 → ( abs ‘ ∏ 𝑧 ∈ 𝑍 𝑧 ) ∈ ℕ ) |
| 15 | 3 14 | eqeltrid | ⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |