This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of the product of the elements of a finite subset of the integers not containing 0 is a poitive integer. (Contributed by AV, 21-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | absproddvds.s | |- ( ph -> Z C_ ZZ ) |
|
| absproddvds.f | |- ( ph -> Z e. Fin ) |
||
| absproddvds.p | |- P = ( abs ` prod_ z e. Z z ) |
||
| absprodnn.z | |- ( ph -> 0 e/ Z ) |
||
| Assertion | absprodnn | |- ( ph -> P e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | absproddvds.s | |- ( ph -> Z C_ ZZ ) |
|
| 2 | absproddvds.f | |- ( ph -> Z e. Fin ) |
|
| 3 | absproddvds.p | |- P = ( abs ` prod_ z e. Z z ) |
|
| 4 | absprodnn.z | |- ( ph -> 0 e/ Z ) |
|
| 5 | 1 | sselda | |- ( ( ph /\ z e. Z ) -> z e. ZZ ) |
| 6 | 2 5 | fprodzcl | |- ( ph -> prod_ z e. Z z e. ZZ ) |
| 7 | 5 | zcnd | |- ( ( ph /\ z e. Z ) -> z e. CC ) |
| 8 | elnelne2 | |- ( ( z e. Z /\ 0 e/ Z ) -> z =/= 0 ) |
|
| 9 | 8 | expcom | |- ( 0 e/ Z -> ( z e. Z -> z =/= 0 ) ) |
| 10 | 4 9 | syl | |- ( ph -> ( z e. Z -> z =/= 0 ) ) |
| 11 | 10 | imp | |- ( ( ph /\ z e. Z ) -> z =/= 0 ) |
| 12 | 2 7 11 | fprodn0 | |- ( ph -> prod_ z e. Z z =/= 0 ) |
| 13 | nnabscl | |- ( ( prod_ z e. Z z e. ZZ /\ prod_ z e. Z z =/= 0 ) -> ( abs ` prod_ z e. Z z ) e. NN ) |
|
| 14 | 6 12 13 | syl2anc | |- ( ph -> ( abs ` prod_ z e. Z z ) e. NN ) |
| 15 | 3 14 | eqeltrid | |- ( ph -> P e. NN ) |