This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two classes are different if they don't belong to the same class. (Contributed by AV, 28-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnelne2 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∉ 𝐶 ) → 𝐴 ≠ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel | ⊢ ( 𝐵 ∉ 𝐶 ↔ ¬ 𝐵 ∈ 𝐶 ) | |
| 2 | nelne2 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶 ) → 𝐴 ≠ 𝐵 ) | |
| 3 | 1 2 | sylan2b | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∉ 𝐶 ) → 𝐴 ≠ 𝐵 ) |