This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap the second and third terms in a double group subtraction. (Contributed by NM, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablnncan.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ablnncan.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| ablnncan.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | ||
| ablnncan.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ablnncan.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| ablsub32.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | ablsub32 | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) − 𝑍 ) = ( ( 𝑋 − 𝑍 ) − 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablnncan.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ablnncan.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 3 | ablnncan.g | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) | |
| 4 | ablnncan.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | ablnncan.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | ablsub32.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 7 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 8 | 1 7 | ablcom | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 ( +g ‘ 𝐺 ) 𝑍 ) = ( 𝑍 ( +g ‘ 𝐺 ) 𝑌 ) ) |
| 9 | 3 5 6 8 | syl3anc | ⊢ ( 𝜑 → ( 𝑌 ( +g ‘ 𝐺 ) 𝑍 ) = ( 𝑍 ( +g ‘ 𝐺 ) 𝑌 ) ) |
| 10 | 9 | oveq2d | ⊢ ( 𝜑 → ( 𝑋 − ( 𝑌 ( +g ‘ 𝐺 ) 𝑍 ) ) = ( 𝑋 − ( 𝑍 ( +g ‘ 𝐺 ) 𝑌 ) ) ) |
| 11 | 1 7 2 3 4 5 6 | ablsubsub4 | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) − 𝑍 ) = ( 𝑋 − ( 𝑌 ( +g ‘ 𝐺 ) 𝑍 ) ) ) |
| 12 | 1 7 2 3 4 6 5 | ablsubsub4 | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑍 ) − 𝑌 ) = ( 𝑋 − ( 𝑍 ( +g ‘ 𝐺 ) 𝑌 ) ) ) |
| 13 | 10 11 12 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) − 𝑍 ) = ( ( 𝑋 − 𝑍 ) − 𝑌 ) ) |