This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for a class abstraction to be a set, deduction form. (Contributed by AV, 19-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abexd.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑥 ∈ 𝐴 ) | |
| abexd.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| Assertion | abexd | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abexd.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑥 ∈ 𝐴 ) | |
| 2 | abexd.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | 1 | ex | ⊢ ( 𝜑 → ( 𝜓 → 𝑥 ∈ 𝐴 ) ) |
| 4 | 3 | abssdv | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } ⊆ 𝐴 ) |
| 5 | 2 4 | ssexd | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } ∈ V ) |