This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of existential quantifiers in a quadruple conjunction. (Contributed by NM, 9-Mar-1995) (Proof shortened by Wolf Lammen, 20-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 4exdistr | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜃 ) ) ↔ ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 ( 𝜓 ∧ ∃ 𝑧 ( 𝜒 ∧ ∃ 𝑤 𝜃 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42v | ⊢ ( ∃ 𝑤 ( 𝜒 ∧ 𝜃 ) ↔ ( 𝜒 ∧ ∃ 𝑤 𝜃 ) ) | |
| 2 | 1 | anbi2i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑤 ( 𝜒 ∧ 𝜃 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ ∃ 𝑤 𝜃 ) ) ) |
| 3 | 19.42v | ⊢ ( ∃ 𝑤 ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜃 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑤 ( 𝜒 ∧ 𝜃 ) ) ) | |
| 4 | df-3an | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ ( 𝜒 ∧ ∃ 𝑤 𝜃 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ ∃ 𝑤 𝜃 ) ) ) | |
| 5 | 2 3 4 | 3bitr4i | ⊢ ( ∃ 𝑤 ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜃 ) ) ↔ ( 𝜑 ∧ 𝜓 ∧ ( 𝜒 ∧ ∃ 𝑤 𝜃 ) ) ) |
| 6 | 5 | 3exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜃 ) ) ↔ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝜑 ∧ 𝜓 ∧ ( 𝜒 ∧ ∃ 𝑤 𝜃 ) ) ) |
| 7 | 3exdistr | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝜑 ∧ 𝜓 ∧ ( 𝜒 ∧ ∃ 𝑤 𝜃 ) ) ↔ ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 ( 𝜓 ∧ ∃ 𝑧 ( 𝜒 ∧ ∃ 𝑤 𝜃 ) ) ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜃 ) ) ↔ ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 ( 𝜓 ∧ ∃ 𝑧 ( 𝜒 ∧ ∃ 𝑤 𝜃 ) ) ) ) |