This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of existential quantifiers in a quadruple conjunction. (Contributed by NM, 9-Mar-1995) (Proof shortened by Wolf Lammen, 20-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 4exdistr | |- ( E. x E. y E. z E. w ( ( ph /\ ps ) /\ ( ch /\ th ) ) <-> E. x ( ph /\ E. y ( ps /\ E. z ( ch /\ E. w th ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42v | |- ( E. w ( ch /\ th ) <-> ( ch /\ E. w th ) ) |
|
| 2 | 1 | anbi2i | |- ( ( ( ph /\ ps ) /\ E. w ( ch /\ th ) ) <-> ( ( ph /\ ps ) /\ ( ch /\ E. w th ) ) ) |
| 3 | 19.42v | |- ( E. w ( ( ph /\ ps ) /\ ( ch /\ th ) ) <-> ( ( ph /\ ps ) /\ E. w ( ch /\ th ) ) ) |
|
| 4 | df-3an | |- ( ( ph /\ ps /\ ( ch /\ E. w th ) ) <-> ( ( ph /\ ps ) /\ ( ch /\ E. w th ) ) ) |
|
| 5 | 2 3 4 | 3bitr4i | |- ( E. w ( ( ph /\ ps ) /\ ( ch /\ th ) ) <-> ( ph /\ ps /\ ( ch /\ E. w th ) ) ) |
| 6 | 5 | 3exbii | |- ( E. x E. y E. z E. w ( ( ph /\ ps ) /\ ( ch /\ th ) ) <-> E. x E. y E. z ( ph /\ ps /\ ( ch /\ E. w th ) ) ) |
| 7 | 3exdistr | |- ( E. x E. y E. z ( ph /\ ps /\ ( ch /\ E. w th ) ) <-> E. x ( ph /\ E. y ( ps /\ E. z ( ch /\ E. w th ) ) ) ) |
|
| 8 | 6 7 | bitri | |- ( E. x E. y E. z E. w ( ( ph /\ ps ) /\ ( ch /\ th ) ) <-> E. x ( ph /\ E. y ( ps /\ E. z ( ch /\ E. w th ) ) ) ) |