This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2optocl.1 | ⊢ 𝑅 = ( 𝐶 × 𝐷 ) | |
| 2optocl.2 | ⊢ ( 〈 𝑥 , 𝑦 〉 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| 2optocl.3 | ⊢ ( 〈 𝑧 , 𝑤 〉 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| 2optocl.4 | ⊢ ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) ) → 𝜑 ) | ||
| Assertion | 2optocl | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ) → 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2optocl.1 | ⊢ 𝑅 = ( 𝐶 × 𝐷 ) | |
| 2 | 2optocl.2 | ⊢ ( 〈 𝑥 , 𝑦 〉 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 2optocl.3 | ⊢ ( 〈 𝑧 , 𝑤 〉 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | 2optocl.4 | ⊢ ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) ) → 𝜑 ) | |
| 5 | 3 | imbi2d | ⊢ ( 〈 𝑧 , 𝑤 〉 = 𝐵 → ( ( 𝐴 ∈ 𝑅 → 𝜓 ) ↔ ( 𝐴 ∈ 𝑅 → 𝜒 ) ) ) |
| 6 | 2 | imbi2d | ⊢ ( 〈 𝑥 , 𝑦 〉 = 𝐴 → ( ( ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) → 𝜑 ) ↔ ( ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) → 𝜓 ) ) ) |
| 7 | 4 | ex | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) → 𝜑 ) ) |
| 8 | 1 6 7 | optocl | ⊢ ( 𝐴 ∈ 𝑅 → ( ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) → 𝜓 ) ) |
| 9 | 8 | com12 | ⊢ ( ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) → ( 𝐴 ∈ 𝑅 → 𝜓 ) ) |
| 10 | 1 5 9 | optocl | ⊢ ( 𝐵 ∈ 𝑅 → ( 𝐴 ∈ 𝑅 → 𝜒 ) ) |
| 11 | 10 | impcom | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ) → 𝜒 ) |