This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there are three elements in a proper unordered pair, and two of them are different from the third one, the two must be equal. (Contributed by AV, 19-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3elpr2eq | |- ( ( ( X e. { A , B } /\ Y e. { A , B } /\ Z e. { A , B } ) /\ ( Y =/= X /\ Z =/= X ) ) -> Y = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri | |- ( X e. { A , B } -> ( X = A \/ X = B ) ) |
|
| 2 | elpri | |- ( Y e. { A , B } -> ( Y = A \/ Y = B ) ) |
|
| 3 | elpri | |- ( Z e. { A , B } -> ( Z = A \/ Z = B ) ) |
|
| 4 | eqtr3 | |- ( ( Z = A /\ X = A ) -> Z = X ) |
|
| 5 | eqneqall | |- ( Z = X -> ( Z =/= X -> Y = Z ) ) |
|
| 6 | 4 5 | syl | |- ( ( Z = A /\ X = A ) -> ( Z =/= X -> Y = Z ) ) |
| 7 | 6 | adantld | |- ( ( Z = A /\ X = A ) -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) |
| 8 | 7 | ex | |- ( Z = A -> ( X = A -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) |
| 9 | 8 | a1d | |- ( Z = A -> ( ( Y = A \/ Y = B ) -> ( X = A -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
| 10 | eqtr3 | |- ( ( Y = A /\ X = A ) -> Y = X ) |
|
| 11 | eqneqall | |- ( Y = X -> ( Y =/= X -> ( Z =/= X -> Y = Z ) ) ) |
|
| 12 | 10 11 | syl | |- ( ( Y = A /\ X = A ) -> ( Y =/= X -> ( Z =/= X -> Y = Z ) ) ) |
| 13 | 12 | impd | |- ( ( Y = A /\ X = A ) -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) |
| 14 | 13 | ex | |- ( Y = A -> ( X = A -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) |
| 15 | 14 | a1d | |- ( Y = A -> ( Z = B -> ( X = A -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
| 16 | eqtr3 | |- ( ( Y = B /\ Z = B ) -> Y = Z ) |
|
| 17 | 16 | 2a1d | |- ( ( Y = B /\ Z = B ) -> ( X = A -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) |
| 18 | 17 | ex | |- ( Y = B -> ( Z = B -> ( X = A -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
| 19 | 15 18 | jaoi | |- ( ( Y = A \/ Y = B ) -> ( Z = B -> ( X = A -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
| 20 | 19 | com12 | |- ( Z = B -> ( ( Y = A \/ Y = B ) -> ( X = A -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
| 21 | 9 20 | jaoi | |- ( ( Z = A \/ Z = B ) -> ( ( Y = A \/ Y = B ) -> ( X = A -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
| 22 | 21 | com13 | |- ( X = A -> ( ( Y = A \/ Y = B ) -> ( ( Z = A \/ Z = B ) -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
| 23 | eqtr3 | |- ( ( Y = A /\ Z = A ) -> Y = Z ) |
|
| 24 | 23 | 2a1d | |- ( ( Y = A /\ Z = A ) -> ( X = B -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) |
| 25 | 24 | ex | |- ( Y = A -> ( Z = A -> ( X = B -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
| 26 | eqtr3 | |- ( ( Y = B /\ X = B ) -> Y = X ) |
|
| 27 | 26 11 | syl | |- ( ( Y = B /\ X = B ) -> ( Y =/= X -> ( Z =/= X -> Y = Z ) ) ) |
| 28 | 27 | impd | |- ( ( Y = B /\ X = B ) -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) |
| 29 | 28 | ex | |- ( Y = B -> ( X = B -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) |
| 30 | 29 | a1d | |- ( Y = B -> ( Z = A -> ( X = B -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
| 31 | 25 30 | jaoi | |- ( ( Y = A \/ Y = B ) -> ( Z = A -> ( X = B -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
| 32 | 31 | com12 | |- ( Z = A -> ( ( Y = A \/ Y = B ) -> ( X = B -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
| 33 | eqtr3 | |- ( ( Z = B /\ X = B ) -> Z = X ) |
|
| 34 | 33 5 | syl | |- ( ( Z = B /\ X = B ) -> ( Z =/= X -> Y = Z ) ) |
| 35 | 34 | adantld | |- ( ( Z = B /\ X = B ) -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) |
| 36 | 35 | ex | |- ( Z = B -> ( X = B -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) |
| 37 | 36 | a1d | |- ( Z = B -> ( ( Y = A \/ Y = B ) -> ( X = B -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
| 38 | 32 37 | jaoi | |- ( ( Z = A \/ Z = B ) -> ( ( Y = A \/ Y = B ) -> ( X = B -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
| 39 | 38 | com13 | |- ( X = B -> ( ( Y = A \/ Y = B ) -> ( ( Z = A \/ Z = B ) -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
| 40 | 22 39 | jaoi | |- ( ( X = A \/ X = B ) -> ( ( Y = A \/ Y = B ) -> ( ( Z = A \/ Z = B ) -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
| 41 | 40 | 3imp | |- ( ( ( X = A \/ X = B ) /\ ( Y = A \/ Y = B ) /\ ( Z = A \/ Z = B ) ) -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) |
| 42 | 1 2 3 41 | syl3an | |- ( ( X e. { A , B } /\ Y e. { A , B } /\ Z e. { A , B } ) -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) |
| 43 | 42 | imp | |- ( ( ( X e. { A , B } /\ Y e. { A , B } /\ Z e. { A , B } ) /\ ( Y =/= X /\ Z =/= X ) ) -> Y = Z ) |