This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 9-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3ecoptocl.1 | ⊢ 𝑆 = ( ( 𝐷 × 𝐷 ) / 𝑅 ) | |
| 3ecoptocl.2 | ⊢ ( [ 〈 𝑥 , 𝑦 〉 ] 𝑅 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| 3ecoptocl.3 | ⊢ ( [ 〈 𝑧 , 𝑤 〉 ] 𝑅 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| 3ecoptocl.4 | ⊢ ( [ 〈 𝑣 , 𝑢 〉 ] 𝑅 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | ||
| 3ecoptocl.5 | ⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷 ) ) → 𝜑 ) | ||
| Assertion | 3ecoptocl | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ecoptocl.1 | ⊢ 𝑆 = ( ( 𝐷 × 𝐷 ) / 𝑅 ) | |
| 2 | 3ecoptocl.2 | ⊢ ( [ 〈 𝑥 , 𝑦 〉 ] 𝑅 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 3ecoptocl.3 | ⊢ ( [ 〈 𝑧 , 𝑤 〉 ] 𝑅 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | 3ecoptocl.4 | ⊢ ( [ 〈 𝑣 , 𝑢 〉 ] 𝑅 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | |
| 5 | 3ecoptocl.5 | ⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷 ) ) → 𝜑 ) | |
| 6 | 3 | imbi2d | ⊢ ( [ 〈 𝑧 , 𝑤 〉 ] 𝑅 = 𝐵 → ( ( 𝐴 ∈ 𝑆 → 𝜓 ) ↔ ( 𝐴 ∈ 𝑆 → 𝜒 ) ) ) |
| 7 | 4 | imbi2d | ⊢ ( [ 〈 𝑣 , 𝑢 〉 ] 𝑅 = 𝐶 → ( ( 𝐴 ∈ 𝑆 → 𝜒 ) ↔ ( 𝐴 ∈ 𝑆 → 𝜃 ) ) ) |
| 8 | 2 | imbi2d | ⊢ ( [ 〈 𝑥 , 𝑦 〉 ] 𝑅 = 𝐴 → ( ( ( ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷 ) ) → 𝜑 ) ↔ ( ( ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷 ) ) → 𝜓 ) ) ) |
| 9 | 5 | 3expib | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( ( ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷 ) ) → 𝜑 ) ) |
| 10 | 1 8 9 | ecoptocl | ⊢ ( 𝐴 ∈ 𝑆 → ( ( ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷 ) ) → 𝜓 ) ) |
| 11 | 10 | com12 | ⊢ ( ( ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ∧ ( 𝑣 ∈ 𝐷 ∧ 𝑢 ∈ 𝐷 ) ) → ( 𝐴 ∈ 𝑆 → 𝜓 ) ) |
| 12 | 1 6 7 11 | 2ecoptocl | ⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( 𝐴 ∈ 𝑆 → 𝜃 ) ) |
| 13 | 12 | com12 | ⊢ ( 𝐴 ∈ 𝑆 → ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → 𝜃 ) ) |
| 14 | 13 | 3impib | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → 𝜃 ) |