This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A walk of length 2 from one vertex to another, different vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 30-Jan-2021) (Revised by AV, 24-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 | |
| 2wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 | ||
| 2wlkd.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) | ||
| 2wlkd.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) | ||
| 2wlkd.e | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) | ||
| 2wlkd.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| 2wlkd.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | 2wlkond | ⊢ ( 𝜑 → 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 | |
| 2 | 2wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 | |
| 3 | 2wlkd.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) | |
| 4 | 2wlkd.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) | |
| 5 | 2wlkd.e | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) | |
| 6 | 2wlkd.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 7 | 2wlkd.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 8 | 1 2 3 4 5 6 7 | 2wlkd | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 9 | 3 | simp1d | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 10 | 1 | fveq1i | ⊢ ( 𝑃 ‘ 0 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) |
| 11 | s3fv0 | ⊢ ( 𝐴 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) = 𝐴 ) | |
| 12 | 10 11 | eqtrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑃 ‘ 0 ) = 𝐴 ) |
| 13 | 9 12 | syl | ⊢ ( 𝜑 → ( 𝑃 ‘ 0 ) = 𝐴 ) |
| 14 | 2 | fveq2i | ⊢ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 〈“ 𝐽 𝐾 ”〉 ) |
| 15 | s2len | ⊢ ( ♯ ‘ 〈“ 𝐽 𝐾 ”〉 ) = 2 | |
| 16 | 14 15 | eqtri | ⊢ ( ♯ ‘ 𝐹 ) = 2 |
| 17 | 1 16 | fveq12i | ⊢ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) |
| 18 | 3 | simp3d | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 19 | s3fv2 | ⊢ ( 𝐶 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) = 𝐶 ) | |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) = 𝐶 ) |
| 21 | 17 20 | eqtrid | ⊢ ( 𝜑 → ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐶 ) |
| 22 | 3simpb | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) | |
| 23 | 3 22 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) |
| 24 | s2cli | ⊢ 〈“ 𝐽 𝐾 ”〉 ∈ Word V | |
| 25 | 2 24 | eqeltri | ⊢ 𝐹 ∈ Word V |
| 26 | s3cli | ⊢ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ Word V | |
| 27 | 1 26 | eqeltri | ⊢ 𝑃 ∈ Word V |
| 28 | 25 27 | pm3.2i | ⊢ ( 𝐹 ∈ Word V ∧ 𝑃 ∈ Word V ) |
| 29 | 6 | iswlkon | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐹 ∈ Word V ∧ 𝑃 ∈ Word V ) ) → ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐶 ) ) ) |
| 30 | 23 28 29 | sylancl | ⊢ ( 𝜑 → ( 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = 𝐶 ) ) ) |
| 31 | 8 13 21 30 | mpbir3and | ⊢ ( 𝜑 → 𝐹 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐶 ) 𝑃 ) |