This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A walk of length 2 from one vertex to another, different vertex via a third vertex. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 30-Jan-2021) (Revised by AV, 24-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2wlkd.p | |- P = <" A B C "> |
|
| 2wlkd.f | |- F = <" J K "> |
||
| 2wlkd.s | |- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
||
| 2wlkd.n | |- ( ph -> ( A =/= B /\ B =/= C ) ) |
||
| 2wlkd.e | |- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) |
||
| 2wlkd.v | |- V = ( Vtx ` G ) |
||
| 2wlkd.i | |- I = ( iEdg ` G ) |
||
| Assertion | 2wlkond | |- ( ph -> F ( A ( WalksOn ` G ) C ) P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.p | |- P = <" A B C "> |
|
| 2 | 2wlkd.f | |- F = <" J K "> |
|
| 3 | 2wlkd.s | |- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
|
| 4 | 2wlkd.n | |- ( ph -> ( A =/= B /\ B =/= C ) ) |
|
| 5 | 2wlkd.e | |- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) |
|
| 6 | 2wlkd.v | |- V = ( Vtx ` G ) |
|
| 7 | 2wlkd.i | |- I = ( iEdg ` G ) |
|
| 8 | 1 2 3 4 5 6 7 | 2wlkd | |- ( ph -> F ( Walks ` G ) P ) |
| 9 | 3 | simp1d | |- ( ph -> A e. V ) |
| 10 | 1 | fveq1i | |- ( P ` 0 ) = ( <" A B C "> ` 0 ) |
| 11 | s3fv0 | |- ( A e. V -> ( <" A B C "> ` 0 ) = A ) |
|
| 12 | 10 11 | eqtrid | |- ( A e. V -> ( P ` 0 ) = A ) |
| 13 | 9 12 | syl | |- ( ph -> ( P ` 0 ) = A ) |
| 14 | 2 | fveq2i | |- ( # ` F ) = ( # ` <" J K "> ) |
| 15 | s2len | |- ( # ` <" J K "> ) = 2 |
|
| 16 | 14 15 | eqtri | |- ( # ` F ) = 2 |
| 17 | 1 16 | fveq12i | |- ( P ` ( # ` F ) ) = ( <" A B C "> ` 2 ) |
| 18 | 3 | simp3d | |- ( ph -> C e. V ) |
| 19 | s3fv2 | |- ( C e. V -> ( <" A B C "> ` 2 ) = C ) |
|
| 20 | 18 19 | syl | |- ( ph -> ( <" A B C "> ` 2 ) = C ) |
| 21 | 17 20 | eqtrid | |- ( ph -> ( P ` ( # ` F ) ) = C ) |
| 22 | 3simpb | |- ( ( A e. V /\ B e. V /\ C e. V ) -> ( A e. V /\ C e. V ) ) |
|
| 23 | 3 22 | syl | |- ( ph -> ( A e. V /\ C e. V ) ) |
| 24 | s2cli | |- <" J K "> e. Word _V |
|
| 25 | 2 24 | eqeltri | |- F e. Word _V |
| 26 | s3cli | |- <" A B C "> e. Word _V |
|
| 27 | 1 26 | eqeltri | |- P e. Word _V |
| 28 | 25 27 | pm3.2i | |- ( F e. Word _V /\ P e. Word _V ) |
| 29 | 6 | iswlkon | |- ( ( ( A e. V /\ C e. V ) /\ ( F e. Word _V /\ P e. Word _V ) ) -> ( F ( A ( WalksOn ` G ) C ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = C ) ) ) |
| 30 | 23 28 29 | sylancl | |- ( ph -> ( F ( A ( WalksOn ` G ) C ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = C ) ) ) |
| 31 | 8 13 21 30 | mpbir3and | |- ( ph -> F ( A ( WalksOn ` G ) C ) P ) |