This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Construction of a trail from two given edges in a graph. (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 24-Jan-2021) (Revised by AV, 24-Mar-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 | |
| 2wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 | ||
| 2wlkd.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) | ||
| 2wlkd.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) | ||
| 2wlkd.e | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) | ||
| 2wlkd.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| 2wlkd.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| 2trld.n | ⊢ ( 𝜑 → 𝐽 ≠ 𝐾 ) | ||
| Assertion | 2trld | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 | |
| 2 | 2wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 | |
| 3 | 2wlkd.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) | |
| 4 | 2wlkd.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) | |
| 5 | 2wlkd.e | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) | |
| 6 | 2wlkd.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 7 | 2wlkd.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 8 | 2trld.n | ⊢ ( 𝜑 → 𝐽 ≠ 𝐾 ) | |
| 9 | 1 2 3 4 5 6 7 | 2wlkd | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 10 | 1 2 3 4 5 | 2wlkdlem7 | ⊢ ( 𝜑 → ( 𝐽 ∈ V ∧ 𝐾 ∈ V ) ) |
| 11 | df-3an | ⊢ ( ( 𝐽 ∈ V ∧ 𝐾 ∈ V ∧ 𝐽 ≠ 𝐾 ) ↔ ( ( 𝐽 ∈ V ∧ 𝐾 ∈ V ) ∧ 𝐽 ≠ 𝐾 ) ) | |
| 12 | 10 8 11 | sylanbrc | ⊢ ( 𝜑 → ( 𝐽 ∈ V ∧ 𝐾 ∈ V ∧ 𝐽 ≠ 𝐾 ) ) |
| 13 | funcnvs2 | ⊢ ( ( 𝐽 ∈ V ∧ 𝐾 ∈ V ∧ 𝐽 ≠ 𝐾 ) → Fun ◡ 〈“ 𝐽 𝐾 ”〉 ) | |
| 14 | 12 13 | syl | ⊢ ( 𝜑 → Fun ◡ 〈“ 𝐽 𝐾 ”〉 ) |
| 15 | 2 | cnveqi | ⊢ ◡ 𝐹 = ◡ 〈“ 𝐽 𝐾 ”〉 |
| 16 | 15 | funeqi | ⊢ ( Fun ◡ 𝐹 ↔ Fun ◡ 〈“ 𝐽 𝐾 ”〉 ) |
| 17 | 14 16 | sylibr | ⊢ ( 𝜑 → Fun ◡ 𝐹 ) |
| 18 | istrl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) ) | |
| 19 | 9 17 18 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |