This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two times a positive real number modulo the real number is zero. (Contributed by Alexander van der Vekens, 8-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2txmodxeq0 | ⊢ ( 𝑋 ∈ ℝ+ → ( ( 2 · 𝑋 ) mod 𝑋 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cnd | ⊢ ( 𝑋 ∈ ℝ+ → 2 ∈ ℂ ) | |
| 2 | rpcn | ⊢ ( 𝑋 ∈ ℝ+ → 𝑋 ∈ ℂ ) | |
| 3 | rpne0 | ⊢ ( 𝑋 ∈ ℝ+ → 𝑋 ≠ 0 ) | |
| 4 | 1 2 3 | divcan4d | ⊢ ( 𝑋 ∈ ℝ+ → ( ( 2 · 𝑋 ) / 𝑋 ) = 2 ) |
| 5 | 2z | ⊢ 2 ∈ ℤ | |
| 6 | 4 5 | eqeltrdi | ⊢ ( 𝑋 ∈ ℝ+ → ( ( 2 · 𝑋 ) / 𝑋 ) ∈ ℤ ) |
| 7 | 2re | ⊢ 2 ∈ ℝ | |
| 8 | 7 | a1i | ⊢ ( 𝑋 ∈ ℝ+ → 2 ∈ ℝ ) |
| 9 | rpre | ⊢ ( 𝑋 ∈ ℝ+ → 𝑋 ∈ ℝ ) | |
| 10 | 8 9 | remulcld | ⊢ ( 𝑋 ∈ ℝ+ → ( 2 · 𝑋 ) ∈ ℝ ) |
| 11 | mod0 | ⊢ ( ( ( 2 · 𝑋 ) ∈ ℝ ∧ 𝑋 ∈ ℝ+ ) → ( ( ( 2 · 𝑋 ) mod 𝑋 ) = 0 ↔ ( ( 2 · 𝑋 ) / 𝑋 ) ∈ ℤ ) ) | |
| 12 | 10 11 | mpancom | ⊢ ( 𝑋 ∈ ℝ+ → ( ( ( 2 · 𝑋 ) mod 𝑋 ) = 0 ↔ ( ( 2 · 𝑋 ) / 𝑋 ) ∈ ℤ ) ) |
| 13 | 6 12 | mpbird | ⊢ ( 𝑋 ∈ ℝ+ → ( ( 2 · 𝑋 ) mod 𝑋 ) = 0 ) |