This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two times a positive real number modulo the real number is zero. (Contributed by Alexander van der Vekens, 8-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2txmodxeq0 | |- ( X e. RR+ -> ( ( 2 x. X ) mod X ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cnd | |- ( X e. RR+ -> 2 e. CC ) |
|
| 2 | rpcn | |- ( X e. RR+ -> X e. CC ) |
|
| 3 | rpne0 | |- ( X e. RR+ -> X =/= 0 ) |
|
| 4 | 1 2 3 | divcan4d | |- ( X e. RR+ -> ( ( 2 x. X ) / X ) = 2 ) |
| 5 | 2z | |- 2 e. ZZ |
|
| 6 | 4 5 | eqeltrdi | |- ( X e. RR+ -> ( ( 2 x. X ) / X ) e. ZZ ) |
| 7 | 2re | |- 2 e. RR |
|
| 8 | 7 | a1i | |- ( X e. RR+ -> 2 e. RR ) |
| 9 | rpre | |- ( X e. RR+ -> X e. RR ) |
|
| 10 | 8 9 | remulcld | |- ( X e. RR+ -> ( 2 x. X ) e. RR ) |
| 11 | mod0 | |- ( ( ( 2 x. X ) e. RR /\ X e. RR+ ) -> ( ( ( 2 x. X ) mod X ) = 0 <-> ( ( 2 x. X ) / X ) e. ZZ ) ) |
|
| 12 | 10 11 | mpancom | |- ( X e. RR+ -> ( ( ( 2 x. X ) mod X ) = 0 <-> ( ( 2 x. X ) / X ) e. ZZ ) ) |
| 13 | 6 12 | mpbird | |- ( X e. RR+ -> ( ( 2 x. X ) mod X ) = 0 ) |