This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Construction of a trail from two given edges in a graph. (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 24-Jan-2021) (Revised by AV, 24-Mar-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2wlkd.p | |- P = <" A B C "> |
|
| 2wlkd.f | |- F = <" J K "> |
||
| 2wlkd.s | |- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
||
| 2wlkd.n | |- ( ph -> ( A =/= B /\ B =/= C ) ) |
||
| 2wlkd.e | |- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) |
||
| 2wlkd.v | |- V = ( Vtx ` G ) |
||
| 2wlkd.i | |- I = ( iEdg ` G ) |
||
| 2trld.n | |- ( ph -> J =/= K ) |
||
| Assertion | 2trld | |- ( ph -> F ( Trails ` G ) P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.p | |- P = <" A B C "> |
|
| 2 | 2wlkd.f | |- F = <" J K "> |
|
| 3 | 2wlkd.s | |- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
|
| 4 | 2wlkd.n | |- ( ph -> ( A =/= B /\ B =/= C ) ) |
|
| 5 | 2wlkd.e | |- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) |
|
| 6 | 2wlkd.v | |- V = ( Vtx ` G ) |
|
| 7 | 2wlkd.i | |- I = ( iEdg ` G ) |
|
| 8 | 2trld.n | |- ( ph -> J =/= K ) |
|
| 9 | 1 2 3 4 5 6 7 | 2wlkd | |- ( ph -> F ( Walks ` G ) P ) |
| 10 | 1 2 3 4 5 | 2wlkdlem7 | |- ( ph -> ( J e. _V /\ K e. _V ) ) |
| 11 | df-3an | |- ( ( J e. _V /\ K e. _V /\ J =/= K ) <-> ( ( J e. _V /\ K e. _V ) /\ J =/= K ) ) |
|
| 12 | 10 8 11 | sylanbrc | |- ( ph -> ( J e. _V /\ K e. _V /\ J =/= K ) ) |
| 13 | funcnvs2 | |- ( ( J e. _V /\ K e. _V /\ J =/= K ) -> Fun `' <" J K "> ) |
|
| 14 | 12 13 | syl | |- ( ph -> Fun `' <" J K "> ) |
| 15 | 2 | cnveqi | |- `' F = `' <" J K "> |
| 16 | 15 | funeqi | |- ( Fun `' F <-> Fun `' <" J K "> ) |
| 17 | 14 16 | sylibr | |- ( ph -> Fun `' F ) |
| 18 | istrl | |- ( F ( Trails ` G ) P <-> ( F ( Walks ` G ) P /\ Fun `' F ) ) |
|
| 19 | 9 17 18 | sylanbrc | |- ( ph -> F ( Trails ` G ) P ) |