This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *13.22 in WhiteheadRussell p. 179. (Contributed by Andrew Salmon, 3-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2sbc5g | |- ( ( A e. C /\ B e. D ) -> ( E. z E. w ( ( z = A /\ w = B ) /\ ph ) <-> [. A / z ]. [. B / w ]. ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 | |- ( y = B -> ( w = y <-> w = B ) ) |
|
| 2 | 1 | anbi2d | |- ( y = B -> ( ( z = x /\ w = y ) <-> ( z = x /\ w = B ) ) ) |
| 3 | 2 | anbi1d | |- ( y = B -> ( ( ( z = x /\ w = y ) /\ ph ) <-> ( ( z = x /\ w = B ) /\ ph ) ) ) |
| 4 | 3 | 2exbidv | |- ( y = B -> ( E. z E. w ( ( z = x /\ w = y ) /\ ph ) <-> E. z E. w ( ( z = x /\ w = B ) /\ ph ) ) ) |
| 5 | dfsbcq | |- ( y = B -> ( [. y / w ]. ph <-> [. B / w ]. ph ) ) |
|
| 6 | 5 | sbcbidv | |- ( y = B -> ( [. x / z ]. [. y / w ]. ph <-> [. x / z ]. [. B / w ]. ph ) ) |
| 7 | 4 6 | bibi12d | |- ( y = B -> ( ( E. z E. w ( ( z = x /\ w = y ) /\ ph ) <-> [. x / z ]. [. y / w ]. ph ) <-> ( E. z E. w ( ( z = x /\ w = B ) /\ ph ) <-> [. x / z ]. [. B / w ]. ph ) ) ) |
| 8 | eqeq2 | |- ( x = A -> ( z = x <-> z = A ) ) |
|
| 9 | 8 | anbi1d | |- ( x = A -> ( ( z = x /\ w = B ) <-> ( z = A /\ w = B ) ) ) |
| 10 | 9 | anbi1d | |- ( x = A -> ( ( ( z = x /\ w = B ) /\ ph ) <-> ( ( z = A /\ w = B ) /\ ph ) ) ) |
| 11 | 10 | 2exbidv | |- ( x = A -> ( E. z E. w ( ( z = x /\ w = B ) /\ ph ) <-> E. z E. w ( ( z = A /\ w = B ) /\ ph ) ) ) |
| 12 | dfsbcq | |- ( x = A -> ( [. x / z ]. [. B / w ]. ph <-> [. A / z ]. [. B / w ]. ph ) ) |
|
| 13 | 11 12 | bibi12d | |- ( x = A -> ( ( E. z E. w ( ( z = x /\ w = B ) /\ ph ) <-> [. x / z ]. [. B / w ]. ph ) <-> ( E. z E. w ( ( z = A /\ w = B ) /\ ph ) <-> [. A / z ]. [. B / w ]. ph ) ) ) |
| 14 | sbc5 | |- ( [. x / z ]. [. y / w ]. ph <-> E. z ( z = x /\ [. y / w ]. ph ) ) |
|
| 15 | 19.42v | |- ( E. w ( z = x /\ ( w = y /\ ph ) ) <-> ( z = x /\ E. w ( w = y /\ ph ) ) ) |
|
| 16 | anass | |- ( ( ( z = x /\ w = y ) /\ ph ) <-> ( z = x /\ ( w = y /\ ph ) ) ) |
|
| 17 | 16 | exbii | |- ( E. w ( ( z = x /\ w = y ) /\ ph ) <-> E. w ( z = x /\ ( w = y /\ ph ) ) ) |
| 18 | sbc5 | |- ( [. y / w ]. ph <-> E. w ( w = y /\ ph ) ) |
|
| 19 | 18 | anbi2i | |- ( ( z = x /\ [. y / w ]. ph ) <-> ( z = x /\ E. w ( w = y /\ ph ) ) ) |
| 20 | 15 17 19 | 3bitr4ri | |- ( ( z = x /\ [. y / w ]. ph ) <-> E. w ( ( z = x /\ w = y ) /\ ph ) ) |
| 21 | 20 | exbii | |- ( E. z ( z = x /\ [. y / w ]. ph ) <-> E. z E. w ( ( z = x /\ w = y ) /\ ph ) ) |
| 22 | 14 21 | bitr2i | |- ( E. z E. w ( ( z = x /\ w = y ) /\ ph ) <-> [. x / z ]. [. y / w ]. ph ) |
| 23 | 7 13 22 | vtocl2g | |- ( ( B e. D /\ A e. C ) -> ( E. z E. w ( ( z = A /\ w = B ) /\ ph ) <-> [. A / z ]. [. B / w ]. ph ) ) |
| 24 | 23 | ancoms | |- ( ( A e. C /\ B e. D ) -> ( E. z E. w ( ( z = A /\ w = B ) /\ ph ) <-> [. A / z ]. [. B / w ]. ph ) ) |