This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalent expression for double existence. Version of 2sb8e with more disjoint variable conditions, not requiring ax-13 . (Contributed by Wolf Lammen, 28-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2sb8ef.1 | |- F/ w ph |
|
| 2sb8ef.2 | |- F/ z ph |
||
| Assertion | 2sb8ef | |- ( E. x E. y ph <-> E. z E. w [ z / x ] [ w / y ] ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sb8ef.1 | |- F/ w ph |
|
| 2 | 2sb8ef.2 | |- F/ z ph |
|
| 3 | 1 | sb8ef | |- ( E. y ph <-> E. w [ w / y ] ph ) |
| 4 | 3 | exbii | |- ( E. x E. y ph <-> E. x E. w [ w / y ] ph ) |
| 5 | excom | |- ( E. x E. w [ w / y ] ph <-> E. w E. x [ w / y ] ph ) |
|
| 6 | 4 5 | bitri | |- ( E. x E. y ph <-> E. w E. x [ w / y ] ph ) |
| 7 | 2 | nfsbv | |- F/ z [ w / y ] ph |
| 8 | 7 | sb8ef | |- ( E. x [ w / y ] ph <-> E. z [ z / x ] [ w / y ] ph ) |
| 9 | 8 | exbii | |- ( E. w E. x [ w / y ] ph <-> E. w E. z [ z / x ] [ w / y ] ph ) |
| 10 | excom | |- ( E. w E. z [ z / x ] [ w / y ] ph <-> E. z E. w [ z / x ] [ w / y ] ph ) |
|
| 11 | 6 9 10 | 3bitri | |- ( E. x E. y ph <-> E. z E. w [ z / x ] [ w / y ] ph ) |