This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reversed double substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 3-Feb-2005) (Revised by Mario Carneiro, 6-Oct-2016) Remove variable constraints. (Revised by Wolf Lammen, 28-Sep-2018) (Proof shortened by Wolf Lammen, 13-Apr-2023) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2sb5rf.1 | ⊢ Ⅎ 𝑧 𝜑 | |
| 2sb5rf.2 | ⊢ Ⅎ 𝑤 𝜑 | ||
| Assertion | 2sb6rf | ⊢ ( 𝜑 ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sb5rf.1 | ⊢ Ⅎ 𝑧 𝜑 | |
| 2 | 2sb5rf.2 | ⊢ Ⅎ 𝑤 𝜑 | |
| 3 | 1 | 19.23 | ⊢ ( ∀ 𝑧 ( ∃ 𝑤 ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → 𝜑 ) ↔ ( ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → 𝜑 ) ) |
| 4 | 2 | 19.23 | ⊢ ( ∀ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → 𝜑 ) ↔ ( ∃ 𝑤 ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → 𝜑 ) ) |
| 5 | 4 | albii | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → 𝜑 ) ↔ ∀ 𝑧 ( ∃ 𝑤 ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → 𝜑 ) ) |
| 6 | 2ax6e | ⊢ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) | |
| 7 | 6 | a1bi | ⊢ ( 𝜑 ↔ ( ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → 𝜑 ) ) |
| 8 | 3 5 7 | 3bitr4ri | ⊢ ( 𝜑 ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → 𝜑 ) ) |
| 9 | sbequ12r | ⊢ ( 𝑧 = 𝑥 → ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑤 / 𝑦 ] 𝜑 ) ) | |
| 10 | sbequ12r | ⊢ ( 𝑤 = 𝑦 → ( [ 𝑤 / 𝑦 ] 𝜑 ↔ 𝜑 ) ) | |
| 11 | 9 10 | sylan9bb | ⊢ ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ 𝜑 ) ) |
| 12 | 11 | pm5.74i | ⊢ ( ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) ↔ ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → 𝜑 ) ) |
| 13 | 12 | 2albii | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → 𝜑 ) ) |
| 14 | 8 13 | bitr4i | ⊢ ( 𝜑 ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) ) |