This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reversed double substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 3-Feb-2005) (Revised by Mario Carneiro, 6-Oct-2016) Remove variable constraints. (Revised by Wolf Lammen, 28-Sep-2018) (Proof shortened by Wolf Lammen, 13-Apr-2023) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2sb5rf.1 | |- F/ z ph |
|
| 2sb5rf.2 | |- F/ w ph |
||
| Assertion | 2sb6rf | |- ( ph <-> A. z A. w ( ( z = x /\ w = y ) -> [ z / x ] [ w / y ] ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sb5rf.1 | |- F/ z ph |
|
| 2 | 2sb5rf.2 | |- F/ w ph |
|
| 3 | 1 | 19.23 | |- ( A. z ( E. w ( z = x /\ w = y ) -> ph ) <-> ( E. z E. w ( z = x /\ w = y ) -> ph ) ) |
| 4 | 2 | 19.23 | |- ( A. w ( ( z = x /\ w = y ) -> ph ) <-> ( E. w ( z = x /\ w = y ) -> ph ) ) |
| 5 | 4 | albii | |- ( A. z A. w ( ( z = x /\ w = y ) -> ph ) <-> A. z ( E. w ( z = x /\ w = y ) -> ph ) ) |
| 6 | 2ax6e | |- E. z E. w ( z = x /\ w = y ) |
|
| 7 | 6 | a1bi | |- ( ph <-> ( E. z E. w ( z = x /\ w = y ) -> ph ) ) |
| 8 | 3 5 7 | 3bitr4ri | |- ( ph <-> A. z A. w ( ( z = x /\ w = y ) -> ph ) ) |
| 9 | sbequ12r | |- ( z = x -> ( [ z / x ] [ w / y ] ph <-> [ w / y ] ph ) ) |
|
| 10 | sbequ12r | |- ( w = y -> ( [ w / y ] ph <-> ph ) ) |
|
| 11 | 9 10 | sylan9bb | |- ( ( z = x /\ w = y ) -> ( [ z / x ] [ w / y ] ph <-> ph ) ) |
| 12 | 11 | pm5.74i | |- ( ( ( z = x /\ w = y ) -> [ z / x ] [ w / y ] ph ) <-> ( ( z = x /\ w = y ) -> ph ) ) |
| 13 | 12 | 2albii | |- ( A. z A. w ( ( z = x /\ w = y ) -> [ z / x ] [ w / y ] ph ) <-> A. z A. w ( ( z = x /\ w = y ) -> ph ) ) |
| 14 | 8 13 | bitr4i | |- ( ph <-> A. z A. w ( ( z = x /\ w = y ) -> [ z / x ] [ w / y ] ph ) ) |