This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of double substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 5-Aug-1993) (Proof shortened by Wolf Lammen, 29-Sep-2018) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbel2x | ⊢ ( 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∧ [ 𝑦 / 𝑤 ] [ 𝑥 / 𝑧 ] 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
| 3 | 1 2 | 2sb5rf | ⊢ ( 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 ( ( 𝑦 = 𝑤 ∧ 𝑥 = 𝑧 ) ∧ [ 𝑦 / 𝑤 ] [ 𝑥 / 𝑧 ] 𝜑 ) ) |
| 4 | ancom | ⊢ ( ( 𝑦 = 𝑤 ∧ 𝑥 = 𝑧 ) ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) | |
| 5 | 4 | anbi1i | ⊢ ( ( ( 𝑦 = 𝑤 ∧ 𝑥 = 𝑧 ) ∧ [ 𝑦 / 𝑤 ] [ 𝑥 / 𝑧 ] 𝜑 ) ↔ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∧ [ 𝑦 / 𝑤 ] [ 𝑥 / 𝑧 ] 𝜑 ) ) |
| 6 | 5 | 2exbii | ⊢ ( ∃ 𝑦 ∃ 𝑥 ( ( 𝑦 = 𝑤 ∧ 𝑥 = 𝑧 ) ∧ [ 𝑦 / 𝑤 ] [ 𝑥 / 𝑧 ] 𝜑 ) ↔ ∃ 𝑦 ∃ 𝑥 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∧ [ 𝑦 / 𝑤 ] [ 𝑥 / 𝑧 ] 𝜑 ) ) |
| 7 | excom | ⊢ ( ∃ 𝑦 ∃ 𝑥 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∧ [ 𝑦 / 𝑤 ] [ 𝑥 / 𝑧 ] 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∧ [ 𝑦 / 𝑤 ] [ 𝑥 / 𝑧 ] 𝜑 ) ) | |
| 8 | 3 6 7 | 3bitri | ⊢ ( 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∧ [ 𝑦 / 𝑤 ] [ 𝑥 / 𝑧 ] 𝜑 ) ) |