This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence for double substitution. (Contributed by NM, 3-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2sb6 | |- ( [ z / x ] [ w / y ] ph <-> A. x A. y ( ( x = z /\ y = w ) -> ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb6 | |- ( [ z / x ] [ w / y ] ph <-> A. x ( x = z -> [ w / y ] ph ) ) |
|
| 2 | 19.21v | |- ( A. y ( x = z -> ( y = w -> ph ) ) <-> ( x = z -> A. y ( y = w -> ph ) ) ) |
|
| 3 | impexp | |- ( ( ( x = z /\ y = w ) -> ph ) <-> ( x = z -> ( y = w -> ph ) ) ) |
|
| 4 | 3 | albii | |- ( A. y ( ( x = z /\ y = w ) -> ph ) <-> A. y ( x = z -> ( y = w -> ph ) ) ) |
| 5 | sb6 | |- ( [ w / y ] ph <-> A. y ( y = w -> ph ) ) |
|
| 6 | 5 | imbi2i | |- ( ( x = z -> [ w / y ] ph ) <-> ( x = z -> A. y ( y = w -> ph ) ) ) |
| 7 | 2 4 6 | 3bitr4ri | |- ( ( x = z -> [ w / y ] ph ) <-> A. y ( ( x = z /\ y = w ) -> ph ) ) |
| 8 | 7 | albii | |- ( A. x ( x = z -> [ w / y ] ph ) <-> A. x A. y ( ( x = z /\ y = w ) -> ph ) ) |
| 9 | 1 8 | bitri | |- ( [ z / x ] [ w / y ] ph <-> A. x A. y ( ( x = z /\ y = w ) -> ph ) ) |