This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence for double substitution. (Contributed by NM, 3-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2sb5 | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∧ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb5 | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝑧 ∧ [ 𝑤 / 𝑦 ] 𝜑 ) ) | |
| 2 | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥 = 𝑧 ∧ ( 𝑦 = 𝑤 ∧ 𝜑 ) ) ↔ ( 𝑥 = 𝑧 ∧ ∃ 𝑦 ( 𝑦 = 𝑤 ∧ 𝜑 ) ) ) | |
| 3 | anass | ⊢ ( ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∧ 𝜑 ) ↔ ( 𝑥 = 𝑧 ∧ ( 𝑦 = 𝑤 ∧ 𝜑 ) ) ) | |
| 4 | 3 | exbii | ⊢ ( ∃ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝑥 = 𝑧 ∧ ( 𝑦 = 𝑤 ∧ 𝜑 ) ) ) |
| 5 | sb5 | ⊢ ( [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑦 ( 𝑦 = 𝑤 ∧ 𝜑 ) ) | |
| 6 | 5 | anbi2i | ⊢ ( ( 𝑥 = 𝑧 ∧ [ 𝑤 / 𝑦 ] 𝜑 ) ↔ ( 𝑥 = 𝑧 ∧ ∃ 𝑦 ( 𝑦 = 𝑤 ∧ 𝜑 ) ) ) |
| 7 | 2 4 6 | 3bitr4ri | ⊢ ( ( 𝑥 = 𝑧 ∧ [ 𝑤 / 𝑦 ] 𝜑 ) ↔ ∃ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∧ 𝜑 ) ) |
| 8 | 7 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑧 ∧ [ 𝑤 / 𝑦 ] 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∧ 𝜑 ) ) |
| 9 | 1 8 | bitri | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∧ 𝜑 ) ) |