This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double "there exists at most one", using implicit substitution. (Contributed by NM, 10-Feb-2005) (Proof shortened by Wolf Lammen, 21-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 2mos.1 | |- ( ( x = z /\ y = w ) -> ( ph <-> ps ) ) |
|
| Assertion | 2mos | |- ( E. z E. w A. x A. y ( ph -> ( x = z /\ y = w ) ) <-> A. x A. y A. z A. w ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2mos.1 | |- ( ( x = z /\ y = w ) -> ( ph <-> ps ) ) |
|
| 2 | 2mo | |- ( E. z E. w A. x A. y ( ph -> ( x = z /\ y = w ) ) <-> A. x A. y A. z A. w ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) ) |
|
| 3 | 1 | 2sbievw | |- ( [ z / x ] [ w / y ] ph <-> ps ) |
| 4 | 3 | anbi2i | |- ( ( ph /\ [ z / x ] [ w / y ] ph ) <-> ( ph /\ ps ) ) |
| 5 | 4 | imbi1i | |- ( ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) <-> ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) ) |
| 6 | 5 | 2albii | |- ( A. z A. w ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) <-> A. z A. w ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) ) |
| 7 | 6 | 2albii | |- ( A. x A. y A. z A. w ( ( ph /\ [ z / x ] [ w / y ] ph ) -> ( x = z /\ y = w ) ) <-> A. x A. y A. z A. w ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) ) |
| 8 | 2 7 | bitri | |- ( E. z E. w A. x A. y ( ph -> ( x = z /\ y = w ) ) <-> A. x A. y A. z A. w ( ( ph /\ ps ) -> ( x = z /\ y = w ) ) ) |