This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every ring contains a zero two-sided ideal. (Contributed by AV, 13-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2idl0.u | ⊢ 𝐼 = ( 2Ideal ‘ 𝑅 ) | |
| 2idl0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | 2idl0 | ⊢ ( 𝑅 ∈ Ring → { 0 } ∈ 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2idl0.u | ⊢ 𝐼 = ( 2Ideal ‘ 𝑅 ) | |
| 2 | 2idl0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) | |
| 4 | 3 2 | lidl0 | ⊢ ( 𝑅 ∈ Ring → { 0 } ∈ ( LIdeal ‘ 𝑅 ) ) |
| 5 | eqid | ⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) | |
| 6 | 5 2 | ridl0 | ⊢ ( 𝑅 ∈ Ring → { 0 } ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
| 7 | 4 6 | elind | ⊢ ( 𝑅 ∈ Ring → { 0 } ∈ ( ( LIdeal ‘ 𝑅 ) ∩ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |
| 8 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 9 | 3 8 5 1 | 2idlval | ⊢ 𝐼 = ( ( LIdeal ‘ 𝑅 ) ∩ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
| 10 | 7 9 | eleqtrrdi | ⊢ ( 𝑅 ∈ Ring → { 0 } ∈ 𝐼 ) |