This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: syl2an with antecedents in standard conjunction form. (Contributed by Alan Sare, 26-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl3an132.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| syl3an132.2 | ⊢ ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) | ||
| syl3an132.3 | ⊢ ( ( 𝜓 ∧ 𝜏 ) → 𝜂 ) | ||
| Assertion | syl3an132 | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜃 ) → 𝜂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an132.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | syl3an132.2 | ⊢ ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) | |
| 3 | syl3an132.3 | ⊢ ( ( 𝜓 ∧ 𝜏 ) → 𝜂 ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝜒 ∧ 𝜃 ) ) → 𝜂 ) |
| 5 | 4 | 3impb | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜃 ) → 𝜂 ) |