This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The factorial grows faster than two to the power N . (Contributed by Mario Carneiro, 15-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2expltfac | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) → ( 2 ↑ 𝑁 ) < ( ! ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = 4 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 4 ) ) | |
| 2 | 2exp4 | ⊢ ( 2 ↑ 4 ) = ; 1 6 | |
| 3 | 1 2 | eqtrdi | ⊢ ( 𝑥 = 4 → ( 2 ↑ 𝑥 ) = ; 1 6 ) |
| 4 | fveq2 | ⊢ ( 𝑥 = 4 → ( ! ‘ 𝑥 ) = ( ! ‘ 4 ) ) | |
| 5 | fac4 | ⊢ ( ! ‘ 4 ) = ; 2 4 | |
| 6 | 4 5 | eqtrdi | ⊢ ( 𝑥 = 4 → ( ! ‘ 𝑥 ) = ; 2 4 ) |
| 7 | 3 6 | breq12d | ⊢ ( 𝑥 = 4 → ( ( 2 ↑ 𝑥 ) < ( ! ‘ 𝑥 ) ↔ ; 1 6 < ; 2 4 ) ) |
| 8 | oveq2 | ⊢ ( 𝑥 = 𝑛 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 𝑛 ) ) | |
| 9 | fveq2 | ⊢ ( 𝑥 = 𝑛 → ( ! ‘ 𝑥 ) = ( ! ‘ 𝑛 ) ) | |
| 10 | 8 9 | breq12d | ⊢ ( 𝑥 = 𝑛 → ( ( 2 ↑ 𝑥 ) < ( ! ‘ 𝑥 ) ↔ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) ) |
| 11 | oveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 2 ↑ 𝑥 ) = ( 2 ↑ ( 𝑛 + 1 ) ) ) | |
| 12 | fveq2 | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ! ‘ 𝑥 ) = ( ! ‘ ( 𝑛 + 1 ) ) ) | |
| 13 | 11 12 | breq12d | ⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 2 ↑ 𝑥 ) < ( ! ‘ 𝑥 ) ↔ ( 2 ↑ ( 𝑛 + 1 ) ) < ( ! ‘ ( 𝑛 + 1 ) ) ) ) |
| 14 | oveq2 | ⊢ ( 𝑥 = 𝑁 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 𝑁 ) ) | |
| 15 | fveq2 | ⊢ ( 𝑥 = 𝑁 → ( ! ‘ 𝑥 ) = ( ! ‘ 𝑁 ) ) | |
| 16 | 14 15 | breq12d | ⊢ ( 𝑥 = 𝑁 → ( ( 2 ↑ 𝑥 ) < ( ! ‘ 𝑥 ) ↔ ( 2 ↑ 𝑁 ) < ( ! ‘ 𝑁 ) ) ) |
| 17 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 18 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 19 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
| 20 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 21 | 6lt10 | ⊢ 6 < ; 1 0 | |
| 22 | 1lt2 | ⊢ 1 < 2 | |
| 23 | 17 18 19 20 21 22 | decltc | ⊢ ; 1 6 < ; 2 4 |
| 24 | 2nn | ⊢ 2 ∈ ℕ | |
| 25 | 24 | a1i | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 2 ∈ ℕ ) |
| 26 | 4nn | ⊢ 4 ∈ ℕ | |
| 27 | simpl | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 4 ) ) | |
| 28 | eluznn | ⊢ ( ( 4 ∈ ℕ ∧ 𝑛 ∈ ( ℤ≥ ‘ 4 ) ) → 𝑛 ∈ ℕ ) | |
| 29 | 26 27 28 | sylancr | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 𝑛 ∈ ℕ ) |
| 30 | 29 | nnnn0d | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 𝑛 ∈ ℕ0 ) |
| 31 | 25 30 | nnexpcld | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 32 | 31 | nnred | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( 2 ↑ 𝑛 ) ∈ ℝ ) |
| 33 | 2re | ⊢ 2 ∈ ℝ | |
| 34 | 33 | a1i | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 2 ∈ ℝ ) |
| 35 | 32 34 | remulcld | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( ( 2 ↑ 𝑛 ) · 2 ) ∈ ℝ ) |
| 36 | 30 | faccld | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( ! ‘ 𝑛 ) ∈ ℕ ) |
| 37 | 36 | nnred | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( ! ‘ 𝑛 ) ∈ ℝ ) |
| 38 | 37 34 | remulcld | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( ( ! ‘ 𝑛 ) · 2 ) ∈ ℝ ) |
| 39 | 29 | nnred | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 𝑛 ∈ ℝ ) |
| 40 | 1red | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 1 ∈ ℝ ) | |
| 41 | 39 40 | readdcld | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( 𝑛 + 1 ) ∈ ℝ ) |
| 42 | 37 41 | remulcld | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( ( ! ‘ 𝑛 ) · ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 43 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 44 | 43 | a1i | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 2 ∈ ℝ+ ) |
| 45 | simpr | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) | |
| 46 | 32 37 44 45 | ltmul1dd | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( ( 2 ↑ 𝑛 ) · 2 ) < ( ( ! ‘ 𝑛 ) · 2 ) ) |
| 47 | 36 | nnnn0d | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( ! ‘ 𝑛 ) ∈ ℕ0 ) |
| 48 | 47 | nn0ge0d | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 0 ≤ ( ! ‘ 𝑛 ) ) |
| 49 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 50 | 29 | nnge1d | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 1 ≤ 𝑛 ) |
| 51 | 40 39 40 50 | leadd1dd | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( 1 + 1 ) ≤ ( 𝑛 + 1 ) ) |
| 52 | 49 51 | eqbrtrid | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 2 ≤ ( 𝑛 + 1 ) ) |
| 53 | 34 41 37 48 52 | lemul2ad | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( ( ! ‘ 𝑛 ) · 2 ) ≤ ( ( ! ‘ 𝑛 ) · ( 𝑛 + 1 ) ) ) |
| 54 | 35 38 42 46 53 | ltletrd | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( ( 2 ↑ 𝑛 ) · 2 ) < ( ( ! ‘ 𝑛 ) · ( 𝑛 + 1 ) ) ) |
| 55 | 2cnd | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 2 ∈ ℂ ) | |
| 56 | 55 30 | expp1d | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( 2 ↑ ( 𝑛 + 1 ) ) = ( ( 2 ↑ 𝑛 ) · 2 ) ) |
| 57 | facp1 | ⊢ ( 𝑛 ∈ ℕ0 → ( ! ‘ ( 𝑛 + 1 ) ) = ( ( ! ‘ 𝑛 ) · ( 𝑛 + 1 ) ) ) | |
| 58 | 30 57 | syl | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( ! ‘ ( 𝑛 + 1 ) ) = ( ( ! ‘ 𝑛 ) · ( 𝑛 + 1 ) ) ) |
| 59 | 54 56 58 | 3brtr4d | ⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( 2 ↑ ( 𝑛 + 1 ) ) < ( ! ‘ ( 𝑛 + 1 ) ) ) |
| 60 | 59 | ex | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) → ( ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) → ( 2 ↑ ( 𝑛 + 1 ) ) < ( ! ‘ ( 𝑛 + 1 ) ) ) ) |
| 61 | 7 10 13 16 23 60 | uzind4i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) → ( 2 ↑ 𝑁 ) < ( ! ‘ 𝑁 ) ) |