This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The factorial grows faster than two to the power N . (Contributed by Mario Carneiro, 15-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2expltfac | |- ( N e. ( ZZ>= ` 4 ) -> ( 2 ^ N ) < ( ! ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( x = 4 -> ( 2 ^ x ) = ( 2 ^ 4 ) ) |
|
| 2 | 2exp4 | |- ( 2 ^ 4 ) = ; 1 6 |
|
| 3 | 1 2 | eqtrdi | |- ( x = 4 -> ( 2 ^ x ) = ; 1 6 ) |
| 4 | fveq2 | |- ( x = 4 -> ( ! ` x ) = ( ! ` 4 ) ) |
|
| 5 | fac4 | |- ( ! ` 4 ) = ; 2 4 |
|
| 6 | 4 5 | eqtrdi | |- ( x = 4 -> ( ! ` x ) = ; 2 4 ) |
| 7 | 3 6 | breq12d | |- ( x = 4 -> ( ( 2 ^ x ) < ( ! ` x ) <-> ; 1 6 < ; 2 4 ) ) |
| 8 | oveq2 | |- ( x = n -> ( 2 ^ x ) = ( 2 ^ n ) ) |
|
| 9 | fveq2 | |- ( x = n -> ( ! ` x ) = ( ! ` n ) ) |
|
| 10 | 8 9 | breq12d | |- ( x = n -> ( ( 2 ^ x ) < ( ! ` x ) <-> ( 2 ^ n ) < ( ! ` n ) ) ) |
| 11 | oveq2 | |- ( x = ( n + 1 ) -> ( 2 ^ x ) = ( 2 ^ ( n + 1 ) ) ) |
|
| 12 | fveq2 | |- ( x = ( n + 1 ) -> ( ! ` x ) = ( ! ` ( n + 1 ) ) ) |
|
| 13 | 11 12 | breq12d | |- ( x = ( n + 1 ) -> ( ( 2 ^ x ) < ( ! ` x ) <-> ( 2 ^ ( n + 1 ) ) < ( ! ` ( n + 1 ) ) ) ) |
| 14 | oveq2 | |- ( x = N -> ( 2 ^ x ) = ( 2 ^ N ) ) |
|
| 15 | fveq2 | |- ( x = N -> ( ! ` x ) = ( ! ` N ) ) |
|
| 16 | 14 15 | breq12d | |- ( x = N -> ( ( 2 ^ x ) < ( ! ` x ) <-> ( 2 ^ N ) < ( ! ` N ) ) ) |
| 17 | 1nn0 | |- 1 e. NN0 |
|
| 18 | 2nn0 | |- 2 e. NN0 |
|
| 19 | 6nn0 | |- 6 e. NN0 |
|
| 20 | 4nn0 | |- 4 e. NN0 |
|
| 21 | 6lt10 | |- 6 < ; 1 0 |
|
| 22 | 1lt2 | |- 1 < 2 |
|
| 23 | 17 18 19 20 21 22 | decltc | |- ; 1 6 < ; 2 4 |
| 24 | 2nn | |- 2 e. NN |
|
| 25 | 24 | a1i | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> 2 e. NN ) |
| 26 | 4nn | |- 4 e. NN |
|
| 27 | simpl | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> n e. ( ZZ>= ` 4 ) ) |
|
| 28 | eluznn | |- ( ( 4 e. NN /\ n e. ( ZZ>= ` 4 ) ) -> n e. NN ) |
|
| 29 | 26 27 28 | sylancr | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> n e. NN ) |
| 30 | 29 | nnnn0d | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> n e. NN0 ) |
| 31 | 25 30 | nnexpcld | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( 2 ^ n ) e. NN ) |
| 32 | 31 | nnred | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( 2 ^ n ) e. RR ) |
| 33 | 2re | |- 2 e. RR |
|
| 34 | 33 | a1i | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> 2 e. RR ) |
| 35 | 32 34 | remulcld | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( ( 2 ^ n ) x. 2 ) e. RR ) |
| 36 | 30 | faccld | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( ! ` n ) e. NN ) |
| 37 | 36 | nnred | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( ! ` n ) e. RR ) |
| 38 | 37 34 | remulcld | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( ( ! ` n ) x. 2 ) e. RR ) |
| 39 | 29 | nnred | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> n e. RR ) |
| 40 | 1red | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> 1 e. RR ) |
|
| 41 | 39 40 | readdcld | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( n + 1 ) e. RR ) |
| 42 | 37 41 | remulcld | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( ( ! ` n ) x. ( n + 1 ) ) e. RR ) |
| 43 | 2rp | |- 2 e. RR+ |
|
| 44 | 43 | a1i | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> 2 e. RR+ ) |
| 45 | simpr | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( 2 ^ n ) < ( ! ` n ) ) |
|
| 46 | 32 37 44 45 | ltmul1dd | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( ( 2 ^ n ) x. 2 ) < ( ( ! ` n ) x. 2 ) ) |
| 47 | 36 | nnnn0d | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( ! ` n ) e. NN0 ) |
| 48 | 47 | nn0ge0d | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> 0 <_ ( ! ` n ) ) |
| 49 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 50 | 29 | nnge1d | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> 1 <_ n ) |
| 51 | 40 39 40 50 | leadd1dd | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( 1 + 1 ) <_ ( n + 1 ) ) |
| 52 | 49 51 | eqbrtrid | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> 2 <_ ( n + 1 ) ) |
| 53 | 34 41 37 48 52 | lemul2ad | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( ( ! ` n ) x. 2 ) <_ ( ( ! ` n ) x. ( n + 1 ) ) ) |
| 54 | 35 38 42 46 53 | ltletrd | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( ( 2 ^ n ) x. 2 ) < ( ( ! ` n ) x. ( n + 1 ) ) ) |
| 55 | 2cnd | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> 2 e. CC ) |
|
| 56 | 55 30 | expp1d | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( 2 ^ ( n + 1 ) ) = ( ( 2 ^ n ) x. 2 ) ) |
| 57 | facp1 | |- ( n e. NN0 -> ( ! ` ( n + 1 ) ) = ( ( ! ` n ) x. ( n + 1 ) ) ) |
|
| 58 | 30 57 | syl | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( ! ` ( n + 1 ) ) = ( ( ! ` n ) x. ( n + 1 ) ) ) |
| 59 | 54 56 58 | 3brtr4d | |- ( ( n e. ( ZZ>= ` 4 ) /\ ( 2 ^ n ) < ( ! ` n ) ) -> ( 2 ^ ( n + 1 ) ) < ( ! ` ( n + 1 ) ) ) |
| 60 | 59 | ex | |- ( n e. ( ZZ>= ` 4 ) -> ( ( 2 ^ n ) < ( ! ` n ) -> ( 2 ^ ( n + 1 ) ) < ( ! ` ( n + 1 ) ) ) ) |
| 61 | 7 10 13 16 23 60 | uzind4i | |- ( N e. ( ZZ>= ` 4 ) -> ( 2 ^ N ) < ( ! ` N ) ) |