This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double existential uniqueness. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 3-Dec-2001) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2eu2 | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝜑 → ( ∃! 𝑥 ∃! 𝑦 𝜑 ↔ ∃! 𝑥 ∃ 𝑦 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eumo | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝜑 → ∃* 𝑦 ∃ 𝑥 𝜑 ) | |
| 2 | 2moex | ⊢ ( ∃* 𝑦 ∃ 𝑥 𝜑 → ∀ 𝑥 ∃* 𝑦 𝜑 ) | |
| 3 | 2eu1 | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ∃! 𝑥 ∃! 𝑦 𝜑 ↔ ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ) ) | |
| 4 | simpl | ⊢ ( ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) → ∃! 𝑥 ∃ 𝑦 𝜑 ) | |
| 5 | 3 4 | biimtrdi | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ∃! 𝑥 ∃! 𝑦 𝜑 → ∃! 𝑥 ∃ 𝑦 𝜑 ) ) |
| 6 | 1 2 5 | 3syl | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝜑 → ( ∃! 𝑥 ∃! 𝑦 𝜑 → ∃! 𝑥 ∃ 𝑦 𝜑 ) ) |
| 7 | 2exeu | ⊢ ( ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) → ∃! 𝑥 ∃! 𝑦 𝜑 ) | |
| 8 | 7 | expcom | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝜑 → ( ∃! 𝑥 ∃ 𝑦 𝜑 → ∃! 𝑥 ∃! 𝑦 𝜑 ) ) |
| 9 | 6 8 | impbid | ⊢ ( ∃! 𝑦 ∃ 𝑥 𝜑 → ( ∃! 𝑥 ∃! 𝑦 𝜑 ↔ ∃! 𝑥 ∃ 𝑦 𝜑 ) ) |